AIM: To determine the changes of gene expression profile in small intestinal allografts in rats after cold preservation/ reperfusion, and to identify the genes relevant to cold preservation/reperfusion injury. METHODS...AIM: To determine the changes of gene expression profile in small intestinal allografts in rats after cold preservation/ reperfusion, and to identify the genes relevant to cold preservation/reperfusion injury. METHODS: Heterotopic segmental small bowel transplantation was performed in six rats with a sham operation and they were used as controls. Total RNA was extracted from the allografts (experimental group) and normal intestines (control group) 1 h after cold preservation/ reperfusion, and then purified to mRNA, which was then reversely transcribed to cDNA, and labeled with fluorescent Cy5-dUTP and Cy3-dUTP to prepare hybridization probes. The mixed probes were hybridized to the cDNA microarray. After high-stringent washing, the fluorescent signals on cDNA microarray chip were scanned and analyzed. RESULTS: Among the 4 096 target genes, 82 differentially expressed genes were identified between the two groups. There were 18 novel genes, 33 expression sequence tags, and 31 previously reported genes. The selected genes may be divided into four classes: genes modulating cellular adhesion, genes regulating cellular energy, glucose and protein metabolism, early response genes and other genes. CONCLUSION: A total of 82 genes that may be relevant to cold preservation/reperfusion injury in small intestinal allografts are identified. Abnormal adhesion between polymorphonuclears and endothelia and failure in energy, glucose and protein metabolism of the grafts may contribute to preservation/reperfusion injury. The functions of the novel genes identified in our study need to be clarified further.展开更多
BACKGROUND: Organ shortage has led to an increased number of transplantations from extended criteria donors. These organs are more vulnerable to ischemia-reperfusion injury. Thus, improvement of organ preservation is...BACKGROUND: Organ shortage has led to an increased number of transplantations from extended criteria donors. These organs are more vulnerable to ischemia-reperfusion injury. Thus, improvement of organ preservation is needed. HTK is a widely used preservation solution for static cold storage in liver transplantation. The present study was to investigate the beneficial effect of warm HTK donor pretreatment on liver preservation.展开更多
基金Supported by the National Natural Science Foundation of China,No. 30271275
文摘AIM: To determine the changes of gene expression profile in small intestinal allografts in rats after cold preservation/ reperfusion, and to identify the genes relevant to cold preservation/reperfusion injury. METHODS: Heterotopic segmental small bowel transplantation was performed in six rats with a sham operation and they were used as controls. Total RNA was extracted from the allografts (experimental group) and normal intestines (control group) 1 h after cold preservation/ reperfusion, and then purified to mRNA, which was then reversely transcribed to cDNA, and labeled with fluorescent Cy5-dUTP and Cy3-dUTP to prepare hybridization probes. The mixed probes were hybridized to the cDNA microarray. After high-stringent washing, the fluorescent signals on cDNA microarray chip were scanned and analyzed. RESULTS: Among the 4 096 target genes, 82 differentially expressed genes were identified between the two groups. There were 18 novel genes, 33 expression sequence tags, and 31 previously reported genes. The selected genes may be divided into four classes: genes modulating cellular adhesion, genes regulating cellular energy, glucose and protein metabolism, early response genes and other genes. CONCLUSION: A total of 82 genes that may be relevant to cold preservation/reperfusion injury in small intestinal allografts are identified. Abnormal adhesion between polymorphonuclears and endothelia and failure in energy, glucose and protein metabolism of the grafts may contribute to preservation/reperfusion injury. The functions of the novel genes identified in our study need to be clarified further.
基金supported by a grant of"Else-Kroner Fresenius Stiftung"(p49/07//A68/07)
文摘BACKGROUND: Organ shortage has led to an increased number of transplantations from extended criteria donors. These organs are more vulnerable to ischemia-reperfusion injury. Thus, improvement of organ preservation is needed. HTK is a widely used preservation solution for static cold storage in liver transplantation. The present study was to investigate the beneficial effect of warm HTK donor pretreatment on liver preservation.