We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part o...We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part of South China is higher than that in the eastern part.The pattern of single-station frequency of the PWCEs are“Yangtze River(YR)uniform”and“east–west inverse”.The YR uniform pattern is the dominant mode,so we focus on this pattern.The cold-air paths for PWCEs of the YR uniform pattern are divided into three types—namely,the west,northwest and north types—among which the west type accounts for the largest proportion.The differences in atmospheric circulation of the PWCEs under the three types of paths are obvious.The thermal inversion layer in the lower troposphere is favorable for precipitation during the PWCEs.The positive water vapor budget for the three types of PWCEs mainly appears at the southern boundary.展开更多
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC...The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.展开更多
The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the...The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable.展开更多
Hot tearing susceptibility(HTS)of Mg-2Zn-(3+0.5 x)Y-x Al(x=0,2 and 3 at%)alloys is predicted by using modified Clyne-Davies’model(CSC^(∗)).The solidification path,solidification characteristic temperatures and dendri...Hot tearing susceptibility(HTS)of Mg-2Zn-(3+0.5 x)Y-x Al(x=0,2 and 3 at%)alloys is predicted by using modified Clyne-Davies’model(CSC^(∗)).The solidification path,solidification characteristic temperatures and dendritic coherency solid fraction have been studied by double-thermocouple thermal analysis.The solidification contraction stress vs.temperature(and time)curves are measured by using a“T”type hot tearing permanent-mold.The results reveal that the CSC^(∗)prediction values are in good agreement with the experimental results.Moreover,Al_(2)Y phase acts as the heterogeneous nucleation core ofα-Mg and significantly influences the grain size.It has been observed that minimum grain size,optimal dendritic coherency and minimum HTS are exhibited by Mg-2Zn-(3+0.5 x)Y-x Al alloy(x=2).Furthermore,when Al content was increased to 3 at%,Al_(2)Y phase exhibited a peritectic reaction and transformed into a mixed structure of Al_(2)Y and Al+Al_(3)Y phases,which increased the HTS of the alloy due to reduced fine-grained Al_(2)Y content.展开更多
Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation str...Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.展开更多
Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strip...Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8 Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening.展开更多
Graph analysis can be done at scale by using Spark GraphX which loading data into memory and running graph analysis in parallel.In this way,we should take data out of graph databases and put it into memory.Considering...Graph analysis can be done at scale by using Spark GraphX which loading data into memory and running graph analysis in parallel.In this way,we should take data out of graph databases and put it into memory.Considering the limitation of memory size,the premise of accelerating graph analytical process reduces the graph data to a suitable size without too much loss of similarity to the original graph.This paper presents our method of data cleaning on the software graph.We use SEQUITUR data compression algorithm to find out hot code path and store it as a whole paths directed acyclic graph.Hot code path is inherent regularity of a program.About 10 to 200 hot code path account for 40%-99%of a program’s execution cost.These hot paths are acyclic contribute more than 0.1%-1.0%of some execution metric.We expand hot code path to a suitable size which is good for runtime and keeps similarity to the original graph.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFC1505602)the National Natural Science Foundation of China (Grant No. 41705055)+2 种基金the Graduate Innovation Project of Jiangsu Province (Grant No. CXZZ11_0485)the Creative Teams of Jiangsu Qinglan Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part of South China is higher than that in the eastern part.The pattern of single-station frequency of the PWCEs are“Yangtze River(YR)uniform”and“east–west inverse”.The YR uniform pattern is the dominant mode,so we focus on this pattern.The cold-air paths for PWCEs of the YR uniform pattern are divided into three types—namely,the west,northwest and north types—among which the west type accounts for the largest proportion.The differences in atmospheric circulation of the PWCEs under the three types of paths are obvious.The thermal inversion layer in the lower troposphere is favorable for precipitation during the PWCEs.The positive water vapor budget for the three types of PWCEs mainly appears at the southern boundary.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 42005037)Special Project of Innovative Development, CMA (CXFZ2021J022, CXFZ2022J008, and CXFZ2021J028)+1 种基金Liaoning Provincial Natural Science Foundation Project (Ph.D. Start-up Research Fund 2019-BS214)Research Project of the Institute of Atmospheric Environment, CMA (2021SYIAEKFMS08, 2020SYIAE08 and 2021SYIAEKFMS09)
文摘The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.
基金This research was jointly supported by the National Natural Science Foundation of China(Grant No.42005037)the Liaoning Provincial Natural Science Foundation Project(PhD Start-up Research Fund 2019-BS-214),the Special Scientific Research Project for the Forecaster(Grant No.CMAYBY2018-018)+2 种基金a Key Technical Project of Liaoning Meteorological Bureau(Grant No.LNGJ201903)the National Key Research and Development Project(Grant No.2018YFC1505601)the Open Foundation Project of the Institute of Atmospheric Environment,China Meteorological Administration(Grant Nos.2020SYIAE08 and 2020SYIAEZD5).
文摘The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable.
基金The authors would like to acknowledge the financial support from the National Natural Science Foundation of China(Nos.51571145 and 51504153)Innovation Talent Pro-gram in Sciences and Technologies for Young and Middle-aged Scientists of Shenyang(No.RC180111)+2 种基金Doctoral Scientific Research Foundation of Liaoning Province(No.20170520033)Youth Project of Liaoning Education Depart-ment(No.LQGD20170328)Natural Science Foundation of Liaoning Province(No.201602548).In addition,the authors would also like to thank Zhenglai Zhang from Zhejiang Hua Shuo Technology Co.,Ltd.and Ningbo City“Science and Technology Innovation 2025”major special project(new en-ergy vehicle lightweight magnesium alloy material precision forming technology research)funding support.
文摘Hot tearing susceptibility(HTS)of Mg-2Zn-(3+0.5 x)Y-x Al(x=0,2 and 3 at%)alloys is predicted by using modified Clyne-Davies’model(CSC^(∗)).The solidification path,solidification characteristic temperatures and dendritic coherency solid fraction have been studied by double-thermocouple thermal analysis.The solidification contraction stress vs.temperature(and time)curves are measured by using a“T”type hot tearing permanent-mold.The results reveal that the CSC^(∗)prediction values are in good agreement with the experimental results.Moreover,Al_(2)Y phase acts as the heterogeneous nucleation core ofα-Mg and significantly influences the grain size.It has been observed that minimum grain size,optimal dendritic coherency and minimum HTS are exhibited by Mg-2Zn-(3+0.5 x)Y-x Al alloy(x=2).Furthermore,when Al content was increased to 3 at%,Al_(2)Y phase exhibited a peritectic reaction and transformed into a mixed structure of Al_(2)Y and Al+Al_(3)Y phases,which increased the HTS of the alloy due to reduced fine-grained Al_(2)Y content.
基金Project(2006BAE03A08)supported by the National Key Technology R&D Program of China
文摘Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.
文摘Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8 Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening.
基金This research work is supported by Hunan Provincial Education Science 13th Five-Year Plan(Grant No.XJK016BXX001)Social Science Foundation of Hunan Province(Grant No.17YBA049)+2 种基金Hunan Provincial Natural Science Foundation of China(Grant No.2017JJ2016)The work is also supported by Open foundation for University Innovation Platform from Hunan Province,China(Grand No.16K013)the 2011 Collaborative Innovation Center of Big Data for Financial and Economical Asset Development and Utility in Universities of Hunan Province.National Students Platform for Innovation and Entrepreneurship Training(Grand No.201811532010).
文摘Graph analysis can be done at scale by using Spark GraphX which loading data into memory and running graph analysis in parallel.In this way,we should take data out of graph databases and put it into memory.Considering the limitation of memory size,the premise of accelerating graph analytical process reduces the graph data to a suitable size without too much loss of similarity to the original graph.This paper presents our method of data cleaning on the software graph.We use SEQUITUR data compression algorithm to find out hot code path and store it as a whole paths directed acyclic graph.Hot code path is inherent regularity of a program.About 10 to 200 hot code path account for 40%-99%of a program’s execution cost.These hot paths are acyclic contribute more than 0.1%-1.0%of some execution metric.We expand hot code path to a suitable size which is good for runtime and keeps similarity to the original graph.