Three ponds with the areas of 800, 1 000 and 1 000 m2 were settled in Yambajan aquaculture base for rearing test of Ictalurus punctatus in plateau zone. The results showed that as 30 000 fries were released, 19 830 fi...Three ponds with the areas of 800, 1 000 and 1 000 m2 were settled in Yambajan aquaculture base for rearing test of Ictalurus punctatus in plateau zone. The results showed that as 30 000 fries were released, 19 830 fingerlings of 1. punctatus were obtained after 270 d rearing, with the average body length of 21.2 cm, the average body weight of 216.5 g, the survival rate of 66.1%, and the fingerling harvest of 4 293.2 kg. Thus, it is effective and feasible to rear I. punctatus with residual heat resources of power plants in cold plateau zone.展开更多
The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau(TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2...The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau(TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2-m air temperatures(Tas) over the TP. In addition, the ensemble of the 28 AGCMs and half of the individual models underestimate annual mean skin temperatures(Ts) over the TP. The cold biases are larger in Tasthan in Ts, and are larger over the western TP. By decomposing the Tsbias using the surface energy budget equation, we investigate the contributions to the cold surface temperature bias on the TP from various factors, including the surface albedo-induced bias, surface cloud radiative forcing, clear-sky shortwave radiation, clear-sky downward longwave radiation, surface sensible heat flux, latent heat flux,and heat storage. The results show a suite of physically interlinked processes contributing to the cold surface temperature bias.Strong negative surface albedo-induced bias associated with excessive snow cover and the surface heat fluxes are highly anticorrelated, and the cancelling out of these two terms leads to a relatively weak contribution to the cold bias. Smaller surface turbulent fluxes lead to colder lower-tropospheric temperature and lower water vapor content, which in turn cause negative clear-sky downward longwave radiation and cold bias. The results suggest that improvements in the parameterization of the area of snow cover, as well as the boundary layer, and hence surface turbulent fluxes, may help to reduce the cold bias over the TP in the models.展开更多
Using correlation analyses, composite analyses, and singular value decomposition, the relationship between the atmospheric cold source over the eastern Tibetan Plateau and atmospheric/ocean circulation is discussed. I...Using correlation analyses, composite analyses, and singular value decomposition, the relationship between the atmospheric cold source over the eastern Tibetan Plateau and atmospheric/ocean circulation is discussed. In winter, the anomaly of the strong (weak) atmospheric cold source over the eastern plateau causes low-level anomalous north (south) winds to appear in eastern China and low-level anomaly zonal west (east) winds to prevail in the equatorial Pacific from spring to autumn. This contributes to the anomalous warm (cold) sea surface temperature the following autumn and winter. In addition, the anomalous variation of sea surface temperature over the equatorial middle and eastern Pacific in winter can influence the snow depth and intensity of the cold source over the plateau in the following winter due to variation of the summer west Pacific subtropical high.展开更多
The microbial diversity in Wuli Area, Qinghai-Tibetan Plateau was investigated using 16S rRNA gene phylogenetic analyses. A total of 117 bacterial and 66 archaeal 16S rRNA gene clones were obtained from the Wuli cold ...The microbial diversity in Wuli Area, Qinghai-Tibetan Plateau was investigated using 16S rRNA gene phylogenetic analyses. A total of 117 bacterial and 66 archaeal 16S rRNA gene clones were obtained from the Wuli cold springs, The bacterial clones could be classified into Proteobacteria, Acid- obacteria, Deinococci, Sphingobacteria, Flavobacteria, Nitrospirae, Actinobacteria, Gemmatimona- detes, and unclassified-bacteria; and the archaeal clones could be classified into Crenarchaeota and Thaumarchaeota. Among the major groups, Proteobacteria and Crenarchaeota were dominant in the bacterial and archaeal 16S rRNA gene clone libraries, respectively. The clone sequences obtained in Wuli cold springs were closely related to those from cold habitats, such as snow/ice/soils on high mountains or at high latitude. Especially, the microbial community composition of Wuli Area was more similar to that in Tibetan glaciers than cold environments of other locations. The data presented in this study have impli- cations for a better understanding of microbial diversity in cold springs on the Qinghai-Tibetan Plateau.展开更多
文摘Three ponds with the areas of 800, 1 000 and 1 000 m2 were settled in Yambajan aquaculture base for rearing test of Ictalurus punctatus in plateau zone. The results showed that as 30 000 fries were released, 19 830 fingerlings of 1. punctatus were obtained after 270 d rearing, with the average body length of 21.2 cm, the average body weight of 216.5 g, the survival rate of 66.1%, and the fingerling harvest of 4 293.2 kg. Thus, it is effective and feasible to rear I. punctatus with residual heat resources of power plants in cold plateau zone.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91437219 and 91637312)the Third Tibetan Plateau Scientific Experiment (Grant No. GYHY201406001)+1 种基金the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC018)the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund (second phase)
文摘The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau(TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2-m air temperatures(Tas) over the TP. In addition, the ensemble of the 28 AGCMs and half of the individual models underestimate annual mean skin temperatures(Ts) over the TP. The cold biases are larger in Tasthan in Ts, and are larger over the western TP. By decomposing the Tsbias using the surface energy budget equation, we investigate the contributions to the cold surface temperature bias on the TP from various factors, including the surface albedo-induced bias, surface cloud radiative forcing, clear-sky shortwave radiation, clear-sky downward longwave radiation, surface sensible heat flux, latent heat flux,and heat storage. The results show a suite of physically interlinked processes contributing to the cold surface temperature bias.Strong negative surface albedo-induced bias associated with excessive snow cover and the surface heat fluxes are highly anticorrelated, and the cancelling out of these two terms leads to a relatively weak contribution to the cold bias. Smaller surface turbulent fluxes lead to colder lower-tropospheric temperature and lower water vapor content, which in turn cause negative clear-sky downward longwave radiation and cold bias. The results suggest that improvements in the parameterization of the area of snow cover, as well as the boundary layer, and hence surface turbulent fluxes, may help to reduce the cold bias over the TP in the models.
基金Natural Science Foundation of China (90711003, 40633018)
文摘Using correlation analyses, composite analyses, and singular value decomposition, the relationship between the atmospheric cold source over the eastern Tibetan Plateau and atmospheric/ocean circulation is discussed. In winter, the anomaly of the strong (weak) atmospheric cold source over the eastern plateau causes low-level anomalous north (south) winds to appear in eastern China and low-level anomaly zonal west (east) winds to prevail in the equatorial Pacific from spring to autumn. This contributes to the anomalous warm (cold) sea surface temperature the following autumn and winter. In addition, the anomalous variation of sea surface temperature over the equatorial middle and eastern Pacific in winter can influence the snow depth and intensity of the cold source over the plateau in the following winter due to variation of the summer west Pacific subtropical high.
基金supported by grants from National Science Foundation of China(Grant Nos.41030211 and 41002123)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Edncation Ministry,Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20100022120009)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.2010ZY16 and 2011YXL03)the Teaching Laboratory Funds from China University of Geosciences,Beijing
文摘The microbial diversity in Wuli Area, Qinghai-Tibetan Plateau was investigated using 16S rRNA gene phylogenetic analyses. A total of 117 bacterial and 66 archaeal 16S rRNA gene clones were obtained from the Wuli cold springs, The bacterial clones could be classified into Proteobacteria, Acid- obacteria, Deinococci, Sphingobacteria, Flavobacteria, Nitrospirae, Actinobacteria, Gemmatimona- detes, and unclassified-bacteria; and the archaeal clones could be classified into Crenarchaeota and Thaumarchaeota. Among the major groups, Proteobacteria and Crenarchaeota were dominant in the bacterial and archaeal 16S rRNA gene clone libraries, respectively. The clone sequences obtained in Wuli cold springs were closely related to those from cold habitats, such as snow/ice/soils on high mountains or at high latitude. Especially, the microbial community composition of Wuli Area was more similar to that in Tibetan glaciers than cold environments of other locations. The data presented in this study have impli- cations for a better understanding of microbial diversity in cold springs on the Qinghai-Tibetan Plateau.