Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base o...Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.展开更多
In the high-speed cold tandem rolling process of thin plate,chatter or slip instability gives rise to the deterioration of equipment and product quality.Macroscopic instability behavior is closely related to interfaci...In the high-speed cold tandem rolling process of thin plate,chatter or slip instability gives rise to the deterioration of equipment and product quality.Macroscopic instability behavior is closely related to interfacial friction-lubrication con-dition which is generally characterized by the friction coefficient.However,with higher and higher speed requirements,the commonly used model of friction coefficient is no longer applicable and accurate.A novel approach is suggested to calculate the speed-dependent friction coefficient,in which the viscosity-pressure-temperature effects of the lubricant,surface roughness states of work rolls and rolled piece are comprehensively involved and the mixed flm lubrication theory is applied.Subsequently,the influences of friction coefficient on the instability of slip and chatter are investigated for a five-stand cold tandem rolling mill.On one side,the critical friction coefficient for each stand is determined by calculating the corresponding slip factor;on the other hand,the friction coefficient varying with rolling speed is combined with the model of theoretical critical rolling speed presented under constant friction coefficient,so that the speed threshold is determined.Furthermore,the stable and unstable regions corresponding to the rear three stands are individually discussed,and the technical strategies are proposed to suppress both slip and chatter frequently occurring in the actual rolling process.展开更多
文摘Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.
基金supported by the National Natural Science Foundation of China(Grant No.51775038).
文摘In the high-speed cold tandem rolling process of thin plate,chatter or slip instability gives rise to the deterioration of equipment and product quality.Macroscopic instability behavior is closely related to interfacial friction-lubrication con-dition which is generally characterized by the friction coefficient.However,with higher and higher speed requirements,the commonly used model of friction coefficient is no longer applicable and accurate.A novel approach is suggested to calculate the speed-dependent friction coefficient,in which the viscosity-pressure-temperature effects of the lubricant,surface roughness states of work rolls and rolled piece are comprehensively involved and the mixed flm lubrication theory is applied.Subsequently,the influences of friction coefficient on the instability of slip and chatter are investigated for a five-stand cold tandem rolling mill.On one side,the critical friction coefficient for each stand is determined by calculating the corresponding slip factor;on the other hand,the friction coefficient varying with rolling speed is combined with the model of theoretical critical rolling speed presented under constant friction coefficient,so that the speed threshold is determined.Furthermore,the stable and unstable regions corresponding to the rear three stands are individually discussed,and the technical strategies are proposed to suppress both slip and chatter frequently occurring in the actual rolling process.