The asphalt pavement longitudinal crack is a common distress in cold regions,resulting from uneven deformation of the subgrade.Analysis of the correlation law between uneven deformation and crack distress is of positi...The asphalt pavement longitudinal crack is a common distress in cold regions,resulting from uneven deformation of the subgrade.Analysis of the correlation law between uneven deformation and crack distress is of positive significance for understanding the mechanism of crack initiation,and putting forward treatment measures.In view of the complexity of longitudinal crack inducement and road surface deformation,the grey relational method was used to analyze this relationship.Through long-term monitoring of the vertical deformation data of typical road sections,the vertical deformation law of the pavement surface and its deformation characteristics under the action of temperature field are analyzed.Parameters such as vertical relative deformation,vertical relative deformation rate and vertical differential deformation VDSr were constructed to describe vertical deformation characteristics.Typical distribution characteristics of longitudinal fractures and their length and distribution characteristics are also described.The grey correlation analysis theory was utilized to analyze the relationship between deformation characteristics of sections,cross sections and monitoring points and longitudinal crack characteristics(length and location).The analysis reveals a linear positive correlation or a high correlation between several indicators.This study can provide a deeper understanding of the occurrence and development mechanism of longitudinal cracks in asphalt pavement of cold areas,and give references for the research of road engineering structure,materials and distress prevention.展开更多
The effects of large cold deformation after solution treatment on the precipitation characteristic and deformation strength of 2024 and 7A04 Al alloys were investigated.The tensile property tests indicate that the age...The effects of large cold deformation after solution treatment on the precipitation characteristic and deformation strength of 2024 and 7A04 Al alloys were investigated.The tensile property tests indicate that the ageing response of the 2024 aluminum alloy is accelerated when treated by cold deformation after solution treatment,and the tensile strength is increased to about 140 MPa while the elongation still keeps above 8%.However,compared with the 2024 alloys,although the aging response of the cold deformed 7A04 aluminum alloy is accelerated,the tensile strength has not changed obviously and the elongation is even decreased drastically.The results of TEM observation show that the S’ phase inside the dislocation cells and at the boundaries of the dislocation cells of the 2024 aluminum alloy has a uniform distribution.But in 7A04 aluminum alloy the club-shaped η’ phase forms at the boundaries of dislocation cells even on dislocation lines,while there still exists small spheric G.P zone in the region with less dislocation.In addition the precipitates in 7A04 alloy with cold rolling present more obvious tendency of growth and coarsening than those without cold rolling.It is indicated that the coherent strain energy of the cylinder formed G.P zones with matrix in the 2024 alloy is smaller than that of the spherical G.P zone in 7A04 alloy,for which a different distribution of precipitates and different effect of strengthening are caused in artificial ageing after resolution treatment and large cold deformation.展开更多
Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolli...Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.展开更多
The emphasis of this exploration was to examine the workability and work hardening performance of Mg(Magnesium)specimen and Mg-B_(4)C composites created via the powder metallurgy technique.The pure Mg and Mg-B_(4)C co...The emphasis of this exploration was to examine the workability and work hardening performance of Mg(Magnesium)specimen and Mg-B_(4)C composites created via the powder metallurgy technique.The pure Mg and Mg-B_(4)C composites are made with distinct weight percentages(Mg-5%B_(4)C,Mg-10%B_(4)C,and Mg-15%B_(4)C)at the unit aspect ratio.The powders and composites characterization are executed by SEM(Scanning Electron Microscope),EDS(Energy Dispersive Spectrum)with an elemental map,and XRD(X-ray Diffraction)examination.It displays that,the B_(4)C particles were dispersed consistently with the Mg matrix.The workability and work hardening examination was conducted in triaxial stress conditions using the cold deformation process.The consequence of workability stress exponent factor(β_(σ)),distinct stress proportion factors(σ_(m)/σ_(eff)and σ_(θ)/σ_(eff)),instantaneous work hardening exponent(n_(1)),work hardening exponent(n),coefficient of strength(k)and instantaneous coefficient of strength(k_(1))are recognized.The outcome displays that Mg-15%B_(4)C specimen has greater workability and work hardening parameter,initial relative density,and triaxial stresses compared with the Mg specimen and Mg-(5–10%)B_(4)C composites.展开更多
The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on mic...The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy.展开更多
The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) h...The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) high nitrogen austenitic stainless steels was investigated. The results show that the "nose" temperatures and incubation periods of the initial time-temperature-precipitation (TTP) curves of aged HNSs are found to be 850 ℃, 60 s; 850 ℃, 45 s; 850 ℃, 60 s and 900 ℃, 90 s, respectively. Based on the analysis of SAD patterns, the coarse cellular Cr2N precipitate which presents a lamellar structure has a hexagonal structure of a=0.478 nm and c=0.444 nm. The Z phase corresponding to a composition of Fe36Cr^2Mo10, is determined to be a body-centered cubic structure ofa=0.892 nm. The precipitating sensitivity presents no more difference with the nitrogen content increasing from 0.77% to 0.96%, but exhibits so obviously that the cellular precipitates nearly overspread the whole field. The addition of Mo element can restrain the TTP curves moving left and down, which means decreasing the sensitivity of aging precipitation. With increasing the cold deformation, the sensitivity of precipitation increases obviously.展开更多
Effect of large cold deformation on the age-hardening characteristics of 2024 aluminum alloys was investigated. The results reveal: 1) the aging response is accelerated after large cold deformation, and the peak stren...Effect of large cold deformation on the age-hardening characteristics of 2024 aluminum alloys was investigated. The results reveal: 1) the aging response is accelerated after large cold deformation, and the peak strength is attained after aging for 40 min; 2) double aging peaks can be found in the age-hardening curves, and the first peak appears when aged for 40 min. The corresponding peak tensile strength (sb) and elongation are up to 580 MPa and 9.2% respectively, the second peak appears when aged for 120 min, but the peak tensile strength(520 MPa) is lower than the first one; 3) in early stage of aging (<40 min), elongation slightly increases from 8% with prolonging aging time of the alloy. Elongation markedly decreases to 2% after aging for 60 min, and shows a plateau with the prolonging of aging time on the age-elongation curve. It is indicated that the high density of dislocation introduced by large deformation accelerates the precipitation of GP zones and the aging response of the alloy. The first aging peak is due to the formation of GP zones and the deformation strengthening caused by the high density of dislocation. And the second peak present in the aging curve is attributed to the nucleation and growth of S’ phase. The offset between dislocation density decreases and precipitation S’-phase finally results in the phenomenon of double aging peaks when aged at 190 ℃. Moreover, it is suggested that the formation of PFZ and coarse equilibrium phase accompanied by the precipitation of S’ phase decrease the elongation.展开更多
Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strip...Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8 Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening.展开更多
By taking 40Cr as a specific object, cold extrusion deformation behavior of medium carbon steel after quenching and tempering was studied by experimental works. The influence of deformation extent (10%-50%), cone angl...By taking 40Cr as a specific object, cold extrusion deformation behavior of medium carbon steel after quenching and tempering was studied by experimental works. The influence of deformation extent (10%-50%), cone angle of die (90 °-120 °), hardness after quenching and tempering (HRC21-29) and lubricated condition on the forming load was analyzed. The results show that there is no central bursting and micro crack in the inner of the extruded specimen, and the forming quality is good. The double-peak phenomenon takes place at the front-end of the specimen; the double-peak index increases with deformation extent, and larger deformation can avoid the double-peak phenomenon. The deformation extent is the most important influencing factor, and the lubricated condition almost has no influence, which means that the phosphate coating plus soap process is still a proper lubrication method for cold extrusion of medium carbon steel after quenching and tempering. By investigating the microscopic structure before and after deformation, the initial equiaxed grain is elongated in the extrusion direction, and this feature is more significant at the front-end of specimen.展开更多
In recent years,with the rapid increase in national electricity demand and energy-saving environmental protection requirements to further improve and develop high-capacity,high efficiency,ultra (ultra) supercritical t...In recent years,with the rapid increase in national electricity demand and energy-saving environmental protection requirements to further improve and develop high-capacity,high efficiency,ultra (ultra) supercritical thermal power units parameter is the current mainstream trends.TP347H austenitic heat-resisting steel as good high temperature oxidation resistance,creep resistance,intergranular corrosion,and excellent welding and hot and cold processing has been widely applied to power plant maintenance and major domestic supercritical capacity power plant boilers.Cold process is important in the production of seamless steel tube.This paper aims at TP347H steel tube,used by high-preesure boiler.Through the studying the effect of cold deormation of steel tube on grain size and mechanical properties at room temperature and solution state,giving reasonable supports for developing the cold process of TP347H steel tube.Through study found that the increasing cold size results to thinner steel crystals and the line slip in the topaz.When the cold size come up to 15%,20%,room temperature as the same as flow of yield strength and intensity increase.In mixed condition of solid and liquid,the line slip in the topaz disappears,as the increasing cold size,room temperature as the same as flow of yield strength and intensity decrease,of the orb of the same thin,and yield strength to strength and pulled all possible.In the same temperature,with cold size increased,the shape of the yield strength to strength,and the extension section of the laws not change significantly.At the same amount as shape,keola the temperature increases,high yield strength and pulled out to reduce intensity.展开更多
In this study,the influence of plastic deformation produced by cold rolling at reduction ratios ranging from 10% to 80% on the microstructure,mechanical properties,and pitting corrosion behavior of high-sulfur freecut...In this study,the influence of plastic deformation produced by cold rolling at reduction ratios ranging from 10% to 80% on the microstructure,mechanical properties,and pitting corrosion behavior of high-sulfur freecutting 316 LS austenitic stainless steel was investigated. The results indicate that slipping is the predominant effect and that sulfide inclusions extend along the rolling direction during the cold deformation of 316 LS. The strong austenite stability of 316 LS results in the formation of only a small quantity of deformation-induced martensite. The experimental results reveal that the strength,hardness,and yield ratio increased with increases in the reduction ratio,mainly due to work hardening,whereas the elongation decreased drastically,due to the combined effect of the work hardening and brittleness caused by the numerous sulfide inclusions. Electrochemically active sites on the surface of316 LS increased with an increased reduction ratio,which caused an increased current fluctuation in the passive zone. This also caused the breakdown potential( E_b) near the pitting zone to exhibit a gradual increase in the zigzag current shift to the left on the polarization curves. The E_b of 316 LS decreased with increases in the reduction ratio,mainly due to the extended sulfide inclusions,the increased dislocation density,and the deformation-induced martensite content.展开更多
The cold strip rolling process on a 4 h mill is studied by coupling the 3 dimensional plasticity deformation of the strip with the elastic deformation of the rolls. On the conditions of that the width to thickness ra...The cold strip rolling process on a 4 h mill is studied by coupling the 3 dimensional plasticity deformation of the strip with the elastic deformation of the rolls. On the conditions of that the width to thickness ratio of the strip is 660 and the exit strip shapes are respectively edge wave, centre wave and good, the computed results of the transverse distributions of the roll gap, the rolling pressure, the inter roll pressure, and the front and back tension agree with the experimental results well. The studing methods and the studied results are of great importance to forming shape theory and guiding the development of shape control technology.展开更多
Texture evolution of high-manganese twining-induced plasticity (TWIP) steels (Fe-16Mn-0.6C) during cold-rolling is studied by means of quantitative orientation distribution function (ODF)analysis.Thickness reductions ...Texture evolution of high-manganese twining-induced plasticity (TWIP) steels (Fe-16Mn-0.6C) during cold-rolling is studied by means of quantitative orientation distribution function (ODF)analysis.Thickness reductions of the specimens during cold-rolling are 10%,20%,30%,50% and 65%,respectively.Evolution of texture is of the Brass type,which is typical for low-stacking fault energy (SFE) materials.The contribution of deformation twinning to the development of texture is clearly illustrated by the monotonic increase of the twinned Cu component.In the present study,the deformation twinning was identified as significantly contributing to deformation up to the maximum reduction applied.These results are useful for the prediction and control of the texture in TWIP steels.展开更多
The deformation and densification laws of preform upsetting and closed-die forging were researched based on experimental results of cold forging of deoxidized Fe powder sintering porous material under different initia...The deformation and densification laws of preform upsetting and closed-die forging were researched based on experimental results of cold forging of deoxidized Fe powder sintering porous material under different initial conditions such as friction factor, ratio between height and diameter and relative density. The fracture limit criteria" for powder cold-forging upsetting and the limit strain curve were achieved. The effect of friction facto,, ratlt, between height and diameter and relative density on fracture strain limitation was emphatically analyzed. The limit process parameter curves for the deformation of upsetting were also confirmed. Laws of deformation, densification and density distribution for closed-die forging of powder perform during cold-forging were further analyzed and discussed with the help of experimental phase analysis. As a result, this experiment established theoretical foundations for the design of preform and die as well as optimization of technological process parameters.展开更多
An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃...An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃) nitriding by deformation, and to strengthen Ti6Al4V alloybydispersionat the same time. Specimens of Ti6Al4V alloyweretreated through the process of solid solutionstrengthening-cold deformation-nitriding at 500℃. The white nitriding layeris formed after some time and then kept stable, changing little withthedeformationdegreeand time. The effect of aging on substrate is significant. Surface hardness and substrate hardnessincrease with deformation increasing. The construction was investigated by XRD.The surface nitridesare TiN, Ti2N, Ti4N3-Xand Ti3N1.29,and thenitridesin cross-section are Ti3N1.29and TiN0.3. The wear tests of specimens after nitriding, aging and deformation were carried out,andthetest data show that the nitrided pieces have the best wear resistance.展开更多
Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1...Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1×10^-3- 1×10^-2 s-1 at room temperature show high extensibility to failure more than 2500%. Microstructures of pure Al and Al-3%Mn alloy at as-milled and cold-rolled state were examined using X-ray diffraction and transmission electron microscopy (TEM). Based on the microstructure analysis, it is established that the mechanism of the continued plastic deformation in SMG Al-3%Mn alloy consists of dislocation slip, grain boundary sliding companied by dynamic recovery and recrystallization, and dynamic recrystallization is a main control factor of the large plastic deformation.展开更多
Mo element was added to cobalt-based alloy L605,and cold forging deformation was performed.The effects of the addition and cold forging deformation on the microstructure and mechanical properties of the alloy were stu...Mo element was added to cobalt-based alloy L605,and cold forging deformation was performed.The effects of the addition and cold forging deformation on the microstructure and mechanical properties of the alloy were studied by thermodynamic calculation,electron backscatter diffraction,transmission electron microscopy,and X-ray diffraction.The stacking fault energy(SFE)of the alloy decreased after the addition,and the formation of stacking faults and intersections were promoted to improve the strength and hardness.The tensile strength of the alloy with Mo increased from 1190 to 1702 MPa after 24%cold deformation,producing significant work hardening.The strengthening mechanism is strain-induced martensitic transformation(SIMT)and deformation twinning.The alloy,combined with Mo and after 24%deformation,had both high strength and ductility in comparison with the original cobalt-based alloy L605.This is attributed to the lower SFE which caused the increase in stacking fault density.During the tensile process,theε-hcp phase was easily generated at the stacking fault to reduce the stress concentration and increase the ductility.Controlling SIMT by adjusting the density of stacking faults can improve the mechanical properties of cobalt-based alloys.Theε-hcp phase,the interaction between deformation twins and dislocations,and the interaction between e-hcp phases during cold forging deformation caused local stress concentration,lowering ductility and toughness.展开更多
In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrus...In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrusion were treated by thermomechanical treatment, analyzed for conductivity and mechanical properties by tensile and microhardness testing, and characterized using optical microscope, TEM and STEM. A mathematical model was established to quantitatively characterize the contribution of solid solution atoms, precipitates and cold deformation to the conductivity of the alloy. The results show that the strength of Al alloy can be significantly improved by solid solution, aging and cold deformation, and the quantitative impacts of solution atoms, precipitates and cold deformation on the conductivity of Al alloy are 10.5%(IACS), 2.3%(IACS) and 0.5%(IACS), respectively. Aging and cold deformation treatments are the keys to obtain high-strength and high-conductivity aluminum alloy wires.展开更多
Recrystallization of cold-rolled discontinuous, precipitation microstructurewhich has fine laminar structure in an Al-40 percent Zn (atom fraction) binary alloy is investigatedby optical microscopy, SEM and TEM. It is...Recrystallization of cold-rolled discontinuous, precipitation microstructurewhich has fine laminar structure in an Al-40 percent Zn (atom fraction) binary alloy is investigatedby optical microscopy, SEM and TEM. It is found that there are two kinds of recrystallizationmechanisms: continuous coarsening (CC) and discontinuous coarsening (DC). The latter can be dividedinto coarsening mainly driven by stored deformation energy at colony boundaries and slip bands andthe one mainly driven by boundary energy in the area with little deformation. It is shown that theaddition of Cu can retard the nucleation of coarsening cells and their growth. X-Ray diffractionanalysis indicated the metastable phase CuZn_4 transformed into equilibrium phase A;_4Cu_3Zn duringthe heating process.展开更多
Influence of severe cold deformation of titanium alloy Ti-1.5%A1-6.8%Mo-4.5%Fe in metastable β condition on the evolution of phase composition, microstructure, and tensile properties during continuous rapid heating w...Influence of severe cold deformation of titanium alloy Ti-1.5%A1-6.8%Mo-4.5%Fe in metastable β condition on the evolution of phase composition, microstructure, and tensile properties during continuous rapid heating was studied. As-deformed alloy was characterized by quasi-amorphous single-phase β condition with an abnormal temperature dependence of electric resistance that was normalized after 48 h exposure at room temperature as a result of isothermal ω phase precipitation. Subsequent rapid heating with a rate of 5 ℃/s caused recovery and recrystallization. Tensile properties of the alloy after different treatments were determined and discussed.展开更多
基金funded by Key Scientific Research Project of Heilongjiang Provincial Department of Transportation(Grant number MH20200828)National Natural Science Foundation of China joint fund for regional innovation and development(Grant number U20A20315)。
文摘The asphalt pavement longitudinal crack is a common distress in cold regions,resulting from uneven deformation of the subgrade.Analysis of the correlation law between uneven deformation and crack distress is of positive significance for understanding the mechanism of crack initiation,and putting forward treatment measures.In view of the complexity of longitudinal crack inducement and road surface deformation,the grey relational method was used to analyze this relationship.Through long-term monitoring of the vertical deformation data of typical road sections,the vertical deformation law of the pavement surface and its deformation characteristics under the action of temperature field are analyzed.Parameters such as vertical relative deformation,vertical relative deformation rate and vertical differential deformation VDSr were constructed to describe vertical deformation characteristics.Typical distribution characteristics of longitudinal fractures and their length and distribution characteristics are also described.The grey correlation analysis theory was utilized to analyze the relationship between deformation characteristics of sections,cross sections and monitoring points and longitudinal crack characteristics(length and location).The analysis reveals a linear positive correlation or a high correlation between several indicators.This study can provide a deeper understanding of the occurrence and development mechanism of longitudinal cracks in asphalt pavement of cold areas,and give references for the research of road engineering structure,materials and distress prevention.
基金Project(50571069) supported by NSFC and Project(05A061) education department of Hunan province,China
文摘The effects of large cold deformation after solution treatment on the precipitation characteristic and deformation strength of 2024 and 7A04 Al alloys were investigated.The tensile property tests indicate that the ageing response of the 2024 aluminum alloy is accelerated when treated by cold deformation after solution treatment,and the tensile strength is increased to about 140 MPa while the elongation still keeps above 8%.However,compared with the 2024 alloys,although the aging response of the cold deformed 7A04 aluminum alloy is accelerated,the tensile strength has not changed obviously and the elongation is even decreased drastically.The results of TEM observation show that the S’ phase inside the dislocation cells and at the boundaries of the dislocation cells of the 2024 aluminum alloy has a uniform distribution.But in 7A04 aluminum alloy the club-shaped η’ phase forms at the boundaries of dislocation cells even on dislocation lines,while there still exists small spheric G.P zone in the region with less dislocation.In addition the precipitates in 7A04 alloy with cold rolling present more obvious tendency of growth and coarsening than those without cold rolling.It is indicated that the coherent strain energy of the cylinder formed G.P zones with matrix in the 2024 alloy is smaller than that of the spherical G.P zone in 7A04 alloy,for which a different distribution of precipitates and different effect of strengthening are caused in artificial ageing after resolution treatment and large cold deformation.
基金Project supported by the National Natural Science Foundations of China (Grant Nos.51371089 and 51201068)the National Key Basic Research and Development Program of China (Grant No.2010CB631001)
文摘Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.
文摘The emphasis of this exploration was to examine the workability and work hardening performance of Mg(Magnesium)specimen and Mg-B_(4)C composites created via the powder metallurgy technique.The pure Mg and Mg-B_(4)C composites are made with distinct weight percentages(Mg-5%B_(4)C,Mg-10%B_(4)C,and Mg-15%B_(4)C)at the unit aspect ratio.The powders and composites characterization are executed by SEM(Scanning Electron Microscope),EDS(Energy Dispersive Spectrum)with an elemental map,and XRD(X-ray Diffraction)examination.It displays that,the B_(4)C particles were dispersed consistently with the Mg matrix.The workability and work hardening examination was conducted in triaxial stress conditions using the cold deformation process.The consequence of workability stress exponent factor(β_(σ)),distinct stress proportion factors(σ_(m)/σ_(eff)and σ_(θ)/σ_(eff)),instantaneous work hardening exponent(n_(1)),work hardening exponent(n),coefficient of strength(k)and instantaneous coefficient of strength(k_(1))are recognized.The outcome displays that Mg-15%B_(4)C specimen has greater workability and work hardening parameter,initial relative density,and triaxial stresses compared with the Mg specimen and Mg-(5–10%)B_(4)C composites.
基金Project(20133069014)supported by the National Aerospace Science Foundation of China
文摘The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy.
基金Project(51304041) supported by the National Natural Science Foundation of ChinaProject(N100402015) supported by Fundamental Research Funds for the Central Universities of China+1 种基金Project(2012AA03A502) supported by the National High Technology Research and Development Program of ChinaProject supported by Program for Liaoning Innovative Research Team in University,China
文摘The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) high nitrogen austenitic stainless steels was investigated. The results show that the "nose" temperatures and incubation periods of the initial time-temperature-precipitation (TTP) curves of aged HNSs are found to be 850 ℃, 60 s; 850 ℃, 45 s; 850 ℃, 60 s and 900 ℃, 90 s, respectively. Based on the analysis of SAD patterns, the coarse cellular Cr2N precipitate which presents a lamellar structure has a hexagonal structure of a=0.478 nm and c=0.444 nm. The Z phase corresponding to a composition of Fe36Cr^2Mo10, is determined to be a body-centered cubic structure ofa=0.892 nm. The precipitating sensitivity presents no more difference with the nitrogen content increasing from 0.77% to 0.96%, but exhibits so obviously that the cellular precipitates nearly overspread the whole field. The addition of Mo element can restrain the TTP curves moving left and down, which means decreasing the sensitivity of aging precipitation. With increasing the cold deformation, the sensitivity of precipitation increases obviously.
基金Project(50571069) supported by the National Natural Science Foundation of China Project(05A061) supported by the Department of Education of Hunan Province, China
文摘Effect of large cold deformation on the age-hardening characteristics of 2024 aluminum alloys was investigated. The results reveal: 1) the aging response is accelerated after large cold deformation, and the peak strength is attained after aging for 40 min; 2) double aging peaks can be found in the age-hardening curves, and the first peak appears when aged for 40 min. The corresponding peak tensile strength (sb) and elongation are up to 580 MPa and 9.2% respectively, the second peak appears when aged for 120 min, but the peak tensile strength(520 MPa) is lower than the first one; 3) in early stage of aging (<40 min), elongation slightly increases from 8% with prolonging aging time of the alloy. Elongation markedly decreases to 2% after aging for 60 min, and shows a plateau with the prolonging of aging time on the age-elongation curve. It is indicated that the high density of dislocation introduced by large deformation accelerates the precipitation of GP zones and the aging response of the alloy. The first aging peak is due to the formation of GP zones and the deformation strengthening caused by the high density of dislocation. And the second peak present in the aging curve is attributed to the nucleation and growth of S’ phase. The offset between dislocation density decreases and precipitation S’-phase finally results in the phenomenon of double aging peaks when aged at 190 ℃. Moreover, it is suggested that the formation of PFZ and coarse equilibrium phase accompanied by the precipitation of S’ phase decrease the elongation.
文摘Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8 Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening.
文摘By taking 40Cr as a specific object, cold extrusion deformation behavior of medium carbon steel after quenching and tempering was studied by experimental works. The influence of deformation extent (10%-50%), cone angle of die (90 °-120 °), hardness after quenching and tempering (HRC21-29) and lubricated condition on the forming load was analyzed. The results show that there is no central bursting and micro crack in the inner of the extruded specimen, and the forming quality is good. The double-peak phenomenon takes place at the front-end of the specimen; the double-peak index increases with deformation extent, and larger deformation can avoid the double-peak phenomenon. The deformation extent is the most important influencing factor, and the lubricated condition almost has no influence, which means that the phosphate coating plus soap process is still a proper lubrication method for cold extrusion of medium carbon steel after quenching and tempering. By investigating the microscopic structure before and after deformation, the initial equiaxed grain is elongated in the extrusion direction, and this feature is more significant at the front-end of specimen.
文摘In recent years,with the rapid increase in national electricity demand and energy-saving environmental protection requirements to further improve and develop high-capacity,high efficiency,ultra (ultra) supercritical thermal power units parameter is the current mainstream trends.TP347H austenitic heat-resisting steel as good high temperature oxidation resistance,creep resistance,intergranular corrosion,and excellent welding and hot and cold processing has been widely applied to power plant maintenance and major domestic supercritical capacity power plant boilers.Cold process is important in the production of seamless steel tube.This paper aims at TP347H steel tube,used by high-preesure boiler.Through the studying the effect of cold deormation of steel tube on grain size and mechanical properties at room temperature and solution state,giving reasonable supports for developing the cold process of TP347H steel tube.Through study found that the increasing cold size results to thinner steel crystals and the line slip in the topaz.When the cold size come up to 15%,20%,room temperature as the same as flow of yield strength and intensity increase.In mixed condition of solid and liquid,the line slip in the topaz disappears,as the increasing cold size,room temperature as the same as flow of yield strength and intensity decrease,of the orb of the same thin,and yield strength to strength and pulled all possible.In the same temperature,with cold size increased,the shape of the yield strength to strength,and the extension section of the laws not change significantly.At the same amount as shape,keola the temperature increases,high yield strength and pulled out to reduce intensity.
文摘In this study,the influence of plastic deformation produced by cold rolling at reduction ratios ranging from 10% to 80% on the microstructure,mechanical properties,and pitting corrosion behavior of high-sulfur freecutting 316 LS austenitic stainless steel was investigated. The results indicate that slipping is the predominant effect and that sulfide inclusions extend along the rolling direction during the cold deformation of 316 LS. The strong austenite stability of 316 LS results in the formation of only a small quantity of deformation-induced martensite. The experimental results reveal that the strength,hardness,and yield ratio increased with increases in the reduction ratio,mainly due to work hardening,whereas the elongation decreased drastically,due to the combined effect of the work hardening and brittleness caused by the numerous sulfide inclusions. Electrochemically active sites on the surface of316 LS increased with an increased reduction ratio,which caused an increased current fluctuation in the passive zone. This also caused the breakdown potential( E_b) near the pitting zone to exhibit a gradual increase in the zigzag current shift to the left on the polarization curves. The E_b of 316 LS decreased with increases in the reduction ratio,mainly due to the extended sulfide inclusions,the increased dislocation density,and the deformation-induced martensite content.
文摘The cold strip rolling process on a 4 h mill is studied by coupling the 3 dimensional plasticity deformation of the strip with the elastic deformation of the rolls. On the conditions of that the width to thickness ratio of the strip is 660 and the exit strip shapes are respectively edge wave, centre wave and good, the computed results of the transverse distributions of the roll gap, the rolling pressure, the inter roll pressure, and the front and back tension agree with the experimental results well. The studing methods and the studied results are of great importance to forming shape theory and guiding the development of shape control technology.
文摘Texture evolution of high-manganese twining-induced plasticity (TWIP) steels (Fe-16Mn-0.6C) during cold-rolling is studied by means of quantitative orientation distribution function (ODF)analysis.Thickness reductions of the specimens during cold-rolling are 10%,20%,30%,50% and 65%,respectively.Evolution of texture is of the Brass type,which is typical for low-stacking fault energy (SFE) materials.The contribution of deformation twinning to the development of texture is clearly illustrated by the monotonic increase of the twinned Cu component.In the present study,the deformation twinning was identified as significantly contributing to deformation up to the maximum reduction applied.These results are useful for the prediction and control of the texture in TWIP steels.
基金Supported by the National Natural Science Foundation of China (No.50175086)
文摘The deformation and densification laws of preform upsetting and closed-die forging were researched based on experimental results of cold forging of deoxidized Fe powder sintering porous material under different initial conditions such as friction factor, ratio between height and diameter and relative density. The fracture limit criteria" for powder cold-forging upsetting and the limit strain curve were achieved. The effect of friction facto,, ratlt, between height and diameter and relative density on fracture strain limitation was emphatically analyzed. The limit process parameter curves for the deformation of upsetting were also confirmed. Laws of deformation, densification and density distribution for closed-die forging of powder perform during cold-forging were further analyzed and discussed with the help of experimental phase analysis. As a result, this experiment established theoretical foundations for the design of preform and die as well as optimization of technological process parameters.
基金Projects(51275105,51375106)supported by the National Natural Science Foundation of China
文摘An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃) nitriding by deformation, and to strengthen Ti6Al4V alloybydispersionat the same time. Specimens of Ti6Al4V alloyweretreated through the process of solid solutionstrengthening-cold deformation-nitriding at 500℃. The white nitriding layeris formed after some time and then kept stable, changing little withthedeformationdegreeand time. The effect of aging on substrate is significant. Surface hardness and substrate hardnessincrease with deformation increasing. The construction was investigated by XRD.The surface nitridesare TiN, Ti2N, Ti4N3-Xand Ti3N1.29,and thenitridesin cross-section are Ti3N1.29and TiN0.3. The wear tests of specimens after nitriding, aging and deformation were carried out,andthetest data show that the nitrided pieces have the best wear resistance.
文摘Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1×10^-3- 1×10^-2 s-1 at room temperature show high extensibility to failure more than 2500%. Microstructures of pure Al and Al-3%Mn alloy at as-milled and cold-rolled state were examined using X-ray diffraction and transmission electron microscopy (TEM). Based on the microstructure analysis, it is established that the mechanism of the continued plastic deformation in SMG Al-3%Mn alloy consists of dislocation slip, grain boundary sliding companied by dynamic recovery and recrystallization, and dynamic recrystallization is a main control factor of the large plastic deformation.
基金supported by Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No.NJYT23115)the Inner Mongolia Natural Science Foundation (Grant No.2022MS05039).
文摘Mo element was added to cobalt-based alloy L605,and cold forging deformation was performed.The effects of the addition and cold forging deformation on the microstructure and mechanical properties of the alloy were studied by thermodynamic calculation,electron backscatter diffraction,transmission electron microscopy,and X-ray diffraction.The stacking fault energy(SFE)of the alloy decreased after the addition,and the formation of stacking faults and intersections were promoted to improve the strength and hardness.The tensile strength of the alloy with Mo increased from 1190 to 1702 MPa after 24%cold deformation,producing significant work hardening.The strengthening mechanism is strain-induced martensitic transformation(SIMT)and deformation twinning.The alloy,combined with Mo and after 24%deformation,had both high strength and ductility in comparison with the original cobalt-based alloy L605.This is attributed to the lower SFE which caused the increase in stacking fault density.During the tensile process,theε-hcp phase was easily generated at the stacking fault to reduce the stress concentration and increase the ductility.Controlling SIMT by adjusting the density of stacking faults can improve the mechanical properties of cobalt-based alloys.Theε-hcp phase,the interaction between deformation twins and dislocations,and the interaction between e-hcp phases during cold forging deformation caused local stress concentration,lowering ductility and toughness.
基金Project(51674077) supported by the National Natural Science Foundation of ChinaProject(2018YFB2001800) supported by the National Research and Development Program of China
文摘In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrusion were treated by thermomechanical treatment, analyzed for conductivity and mechanical properties by tensile and microhardness testing, and characterized using optical microscope, TEM and STEM. A mathematical model was established to quantitatively characterize the contribution of solid solution atoms, precipitates and cold deformation to the conductivity of the alloy. The results show that the strength of Al alloy can be significantly improved by solid solution, aging and cold deformation, and the quantitative impacts of solution atoms, precipitates and cold deformation on the conductivity of Al alloy are 10.5%(IACS), 2.3%(IACS) and 0.5%(IACS), respectively. Aging and cold deformation treatments are the keys to obtain high-strength and high-conductivity aluminum alloy wires.
文摘Recrystallization of cold-rolled discontinuous, precipitation microstructurewhich has fine laminar structure in an Al-40 percent Zn (atom fraction) binary alloy is investigatedby optical microscopy, SEM and TEM. It is found that there are two kinds of recrystallizationmechanisms: continuous coarsening (CC) and discontinuous coarsening (DC). The latter can be dividedinto coarsening mainly driven by stored deformation energy at colony boundaries and slip bands andthe one mainly driven by boundary energy in the area with little deformation. It is shown that theaddition of Cu can retard the nucleation of coarsening cells and their growth. X-Ray diffractionanalysis indicated the metastable phase CuZn_4 transformed into equilibrium phase A;_4Cu_3Zn duringthe heating process.
文摘Influence of severe cold deformation of titanium alloy Ti-1.5%A1-6.8%Mo-4.5%Fe in metastable β condition on the evolution of phase composition, microstructure, and tensile properties during continuous rapid heating was studied. As-deformed alloy was characterized by quasi-amorphous single-phase β condition with an abnormal temperature dependence of electric resistance that was normalized after 48 h exposure at room temperature as a result of isothermal ω phase precipitation. Subsequent rapid heating with a rate of 5 ℃/s caused recovery and recrystallization. Tensile properties of the alloy after different treatments were determined and discussed.