Cold temperatures, a major abiotic stress, threaten the growth and development of plants, worldwide. To cope with this adverse environmental cue, plants from temperate climates have evolved an array of sophisticated m...Cold temperatures, a major abiotic stress, threaten the growth and development of plants, worldwide. To cope with this adverse environmental cue, plants from temperate climates have evolved an array of sophisticated mechanisms to acclimate to cold periods, increasing their ability to tolerate freezing stress. Over the last decade, significant progress has been made in determining the molecular mechanisms underpinning cold acclimation, including following the identification of several pivotal components, including candidates for cold sensors, protein kinases, and transcription factors. With these developments, we have a better understanding of the CBF-dependent cold-signaling pathway. In this review, we summarize recent progress made in elucidating the cold-signaling pathways, especially the C-repeat binding factor-dependent pathway, and describe the regulatory function of the crucial components of plant cold signaling. We also discuss the unsolved questions that should be the focus of future work.展开更多
Cold stress responses help insects to survive under low temperatures that would be lethal otherwise.This phenomenon might contribute to the invasion of some Bemisia tabaci cryptic species from subtropical areas to tem...Cold stress responses help insects to survive under low temperatures that would be lethal otherwise.This phenomenon might contribute to the invasion of some Bemisia tabaci cryptic species from subtropical areas to temperate regions.However,the molecular mechanisms regulating cold stress responses in whitefly are yet unclear.Mitogen-activated protein kinases(MAPKs)which including p38,ERK,and JNK,are well known for their roles in regulating metabolic responses to cold stress in many insects.In this study,we explored the possible roles of the MAPKs in response to low temperature stresses in the Mediterranean cryptic species(the Q-biotype)of the B.tabaci species complex.First,we cloned the p38 and ERK genes from the whitefly cDNA library.Next,we analyzed the activation of MAPKs during cold stress in the Mediterranean cryptic species by immuno-blotting.After cold stress,the level of phospho-p38 increased but no significant change was observed in the phosphorylation of ERK and JNK,thus suggesting that the p38 might be responsible for the defense response to low temperature stress.Furthermore,we demonstrated that:i)3 min chilling at 0°C was sufficient for the activation of p38 MAPK pathway in this whitefly;and ii)the amount of phosphorylated p38 increased significantly in the first 20 min of chilling,reversed by 60 min,and then returned to the original level by 120 min.Taken together,our results suggest that the p38 pathway is important during response to low temperature stress in the Mediterranean cryptic species of the B.tabaci species complex.展开更多
基于稀疏非均匀COLD(concentered orthogonal loop and dipole)阵列,提出了一种极化信号的DOA(direction-of-arrival)无模糊估计算法。该算法利用了稀疏非均匀COLD阵列的阵元数少和孔径大等特点,因而在阵元数目一定的情况下,可获得较高...基于稀疏非均匀COLD(concentered orthogonal loop and dipole)阵列,提出了一种极化信号的DOA(direction-of-arrival)无模糊估计算法。该算法利用了稀疏非均匀COLD阵列的阵元数少和孔径大等特点,因而在阵元数目一定的情况下,可获得较高的DOA估计精度。由于稀疏非均匀COLD阵列可分成电磁环和偶极子两个子阵列,通过分析每个子阵列DOA估计的模糊性,给出了整个稀疏非均匀COLD阵列不发生DOA估计模糊的条件。通过计算机仿真证明了该算法的有效性。展开更多
Cold tolerance of crop plants influences survival and productivity under low-temperature conditions. Elucidation of molecular mechanisms underlying low temperature tolerance could be helpful in breeding. In this study...Cold tolerance of crop plants influences survival and productivity under low-temperature conditions. Elucidation of molecular mechanisms underlying low temperature tolerance could be helpful in breeding. In this study, we used integrated transcriptomics and metabolomics analyses to investigate changes in gene/metabolite activity in a winter-hardy wheat cultivar of(cv. Jing 411) when subjected to sold stress. The 223 metabolites mainly enriched during cold acclimation included carbohydrates, flavonoids, and amino acids.Eight common metabolites had altered abundance following freezing treatment;six increased and two decreased. Transcriptome analysis revealed that 29,066 genes were differentially expressed in wheat crowns after cold acclimation compared to the nonacclimated control. Among them, 745 genes were up-regulated following freezing treatment, suggesting substantial change in expression of a large quantity of genes upon cold acclimation and freezing treatment, which impacts on the modified metabolites.Integrated analysis of gene expression and metabolite profiles revealed that the abscisic acid(ABA)/jasmonic acid(JA) phytohormone signaling and proline biosynthesis pathways were significantly modulated under cold acclimation and freezing treatments. Our results indicated that low-temperature stress induced substantial changes in both transcriptomes and metabolomes. Critical pathways associated with ABA/JA signaling and proline biosynthesis played important roles in regulating cold tolerance in wheat.展开更多
Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on t...Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.展开更多
This paper designs a set of semi-automatic intelligent cold chain cargo proximity warning system with wireless data transmission, lightweight Optical Character Recognition identification algorithm framework and electr...This paper designs a set of semi-automatic intelligent cold chain cargo proximity warning system with wireless data transmission, lightweight Optical Character Recognition identification algorithm framework and electronic label automatic warning as the core technology for cold chain dairy Fast Moving Consumer Goods contractors. In terms of hardware, Pulse Frequency Modulation modulation and demodulation are used as the main technology to realize wireless transmission and reception of equipment, and digital electronic tags are added to warn the same batch of upcoming goods. In terms of software, based on Chinese-ocr algorithm, image preprocessing and recognition methods are studied, and an early warning system is designed. So as to realize semi-automatic early warning of cold chain logistics goods.展开更多
基金supported by grants from the National Natural Science Foundation of China(31730011 and 31700214)
文摘Cold temperatures, a major abiotic stress, threaten the growth and development of plants, worldwide. To cope with this adverse environmental cue, plants from temperate climates have evolved an array of sophisticated mechanisms to acclimate to cold periods, increasing their ability to tolerate freezing stress. Over the last decade, significant progress has been made in determining the molecular mechanisms underpinning cold acclimation, including following the identification of several pivotal components, including candidates for cold sensors, protein kinases, and transcription factors. With these developments, we have a better understanding of the CBF-dependent cold-signaling pathway. In this review, we summarize recent progress made in elucidating the cold-signaling pathways, especially the C-repeat binding factor-dependent pathway, and describe the regulatory function of the crucial components of plant cold signaling. We also discuss the unsolved questions that should be the focus of future work.
基金supported by the National Natural Science Foundation of China(30730061)the National Basic Research Program of China(2009CB119203)
文摘Cold stress responses help insects to survive under low temperatures that would be lethal otherwise.This phenomenon might contribute to the invasion of some Bemisia tabaci cryptic species from subtropical areas to temperate regions.However,the molecular mechanisms regulating cold stress responses in whitefly are yet unclear.Mitogen-activated protein kinases(MAPKs)which including p38,ERK,and JNK,are well known for their roles in regulating metabolic responses to cold stress in many insects.In this study,we explored the possible roles of the MAPKs in response to low temperature stresses in the Mediterranean cryptic species(the Q-biotype)of the B.tabaci species complex.First,we cloned the p38 and ERK genes from the whitefly cDNA library.Next,we analyzed the activation of MAPKs during cold stress in the Mediterranean cryptic species by immuno-blotting.After cold stress,the level of phospho-p38 increased but no significant change was observed in the phosphorylation of ERK and JNK,thus suggesting that the p38 might be responsible for the defense response to low temperature stress.Furthermore,we demonstrated that:i)3 min chilling at 0°C was sufficient for the activation of p38 MAPK pathway in this whitefly;and ii)the amount of phosphorylated p38 increased significantly in the first 20 min of chilling,reversed by 60 min,and then returned to the original level by 120 min.Taken together,our results suggest that the p38 pathway is important during response to low temperature stress in the Mediterranean cryptic species of the B.tabaci species complex.
文摘基于稀疏非均匀COLD(concentered orthogonal loop and dipole)阵列,提出了一种极化信号的DOA(direction-of-arrival)无模糊估计算法。该算法利用了稀疏非均匀COLD阵列的阵元数少和孔径大等特点,因而在阵元数目一定的情况下,可获得较高的DOA估计精度。由于稀疏非均匀COLD阵列可分成电磁环和偶极子两个子阵列,通过分析每个子阵列DOA估计的模糊性,给出了整个稀疏非均匀COLD阵列不发生DOA估计模糊的条件。通过计算机仿真证明了该算法的有效性。
基金supported by the National Key Research and Development Program of China (2017YFD0101000)the Technology Innovation of Winter Wheat of Science and Technology Planning Project of Hebei Province (16226320D)
文摘Cold tolerance of crop plants influences survival and productivity under low-temperature conditions. Elucidation of molecular mechanisms underlying low temperature tolerance could be helpful in breeding. In this study, we used integrated transcriptomics and metabolomics analyses to investigate changes in gene/metabolite activity in a winter-hardy wheat cultivar of(cv. Jing 411) when subjected to sold stress. The 223 metabolites mainly enriched during cold acclimation included carbohydrates, flavonoids, and amino acids.Eight common metabolites had altered abundance following freezing treatment;six increased and two decreased. Transcriptome analysis revealed that 29,066 genes were differentially expressed in wheat crowns after cold acclimation compared to the nonacclimated control. Among them, 745 genes were up-regulated following freezing treatment, suggesting substantial change in expression of a large quantity of genes upon cold acclimation and freezing treatment, which impacts on the modified metabolites.Integrated analysis of gene expression and metabolite profiles revealed that the abscisic acid(ABA)/jasmonic acid(JA) phytohormone signaling and proline biosynthesis pathways were significantly modulated under cold acclimation and freezing treatments. Our results indicated that low-temperature stress induced substantial changes in both transcriptomes and metabolomes. Critical pathways associated with ABA/JA signaling and proline biosynthesis played important roles in regulating cold tolerance in wheat.
基金supported by the National Natural Science Foundation of China,No.81303091
文摘Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.
文摘This paper designs a set of semi-automatic intelligent cold chain cargo proximity warning system with wireless data transmission, lightweight Optical Character Recognition identification algorithm framework and electronic label automatic warning as the core technology for cold chain dairy Fast Moving Consumer Goods contractors. In terms of hardware, Pulse Frequency Modulation modulation and demodulation are used as the main technology to realize wireless transmission and reception of equipment, and digital electronic tags are added to warn the same batch of upcoming goods. In terms of software, based on Chinese-ocr algorithm, image preprocessing and recognition methods are studied, and an early warning system is designed. So as to realize semi-automatic early warning of cold chain logistics goods.