The paper presents the results of investigation on the effect of soaking time on the yield strength, ductility and hardness properties of annealed cold-drawn low carbon steel. The low carbon steel cold-drawn at 40% de...The paper presents the results of investigation on the effect of soaking time on the yield strength, ductility and hardness properties of annealed cold-drawn low carbon steel. The low carbon steel cold-drawn at 40% deformation was annealed at 900 deg Celsius for soaking times of 10, 20, 30, 40, 50 and 60 minutes. Tensile, charpy and Brinnel hardness tests were conducted to determine the yield strengths, tensile strengths, impact strengths, ductility and hardness of the annealed steel with increasing soaking time. The yield strength, tensile strength, hardness and impact strength of the steel showed a continuous drop in value with increasing soaking time up to 60 minutes with a steep drop between 30 and 40 minutes. Ductility values followed the same decreasing trend up to 40 minutes soaking time after which the values started increasing again till 60 minutes soaking time. There was a linear relationship between the tensile strength and hardness of the material for different soaking times. This linear relationship was also observed for yield strength and hardness of the material.展开更多
In the Yangtze river aera,the first crop of indi-ca rice is sown in late Mar to early Apr andtransplanted in early May.Usually,seedlingsperish when abnormal low temperature of 6-10℃ lasted for 3 d or longer.The effec...In the Yangtze river aera,the first crop of indi-ca rice is sown in late Mar to early Apr andtransplanted in early May.Usually,seedlingsperish when abnormal low temperature of 6-10℃ lasted for 3 d or longer.The effect ofsocking seed with urea solution on increasingthe cold tolerance at the seedling stage was展开更多
Drawn low carbon steel is characterized by brittle fracture. These defects are associated with the poor ductility and high strain hardening due to the cold work. There is a need therefore to determine optimum heat tre...Drawn low carbon steel is characterized by brittle fracture. These defects are associated with the poor ductility and high strain hardening due to the cold work. There is a need therefore to determine optimum heat treatment parameters that could ensure improved toughness and ductility. Determining the optimum annealing parameters ensures valued recrystallization and also minimizes grain growth that could be detrimental to the resulting product. 40% and 55% cold drawn steels were annealed at temperatures 500℃ to 650℃ at intervals of 50℃ and soaked for 10 to 60 minutes at interval of 10 minutes to identify the temperature range and soaking time where optimum combination of properties could be obtained. Tensile test and impact toughness experiments were done to determine the required properties of the steel. Polynomial regression analysis was used to fit the properties relationship with soaking time and temperatures and the classical optimization technique was used to determine the minimum soaking time and temperature required for improved properties of the steel. Annealing treatment at 588℃ for 11 minutes at grain size of 44.7 mm can be considered to be the optimum annealing treatment for the 40% cold drawn 0.12 wt% C steel and 539℃ for 17 minutes at grain size of 19.5 mm for the 55% cold drawn 0.12 wt% C steel.展开更多
文摘The paper presents the results of investigation on the effect of soaking time on the yield strength, ductility and hardness properties of annealed cold-drawn low carbon steel. The low carbon steel cold-drawn at 40% deformation was annealed at 900 deg Celsius for soaking times of 10, 20, 30, 40, 50 and 60 minutes. Tensile, charpy and Brinnel hardness tests were conducted to determine the yield strengths, tensile strengths, impact strengths, ductility and hardness of the annealed steel with increasing soaking time. The yield strength, tensile strength, hardness and impact strength of the steel showed a continuous drop in value with increasing soaking time up to 60 minutes with a steep drop between 30 and 40 minutes. Ductility values followed the same decreasing trend up to 40 minutes soaking time after which the values started increasing again till 60 minutes soaking time. There was a linear relationship between the tensile strength and hardness of the material for different soaking times. This linear relationship was also observed for yield strength and hardness of the material.
文摘In the Yangtze river aera,the first crop of indi-ca rice is sown in late Mar to early Apr andtransplanted in early May.Usually,seedlingsperish when abnormal low temperature of 6-10℃ lasted for 3 d or longer.The effect ofsocking seed with urea solution on increasingthe cold tolerance at the seedling stage was
文摘Drawn low carbon steel is characterized by brittle fracture. These defects are associated with the poor ductility and high strain hardening due to the cold work. There is a need therefore to determine optimum heat treatment parameters that could ensure improved toughness and ductility. Determining the optimum annealing parameters ensures valued recrystallization and also minimizes grain growth that could be detrimental to the resulting product. 40% and 55% cold drawn steels were annealed at temperatures 500℃ to 650℃ at intervals of 50℃ and soaked for 10 to 60 minutes at interval of 10 minutes to identify the temperature range and soaking time where optimum combination of properties could be obtained. Tensile test and impact toughness experiments were done to determine the required properties of the steel. Polynomial regression analysis was used to fit the properties relationship with soaking time and temperatures and the classical optimization technique was used to determine the minimum soaking time and temperature required for improved properties of the steel. Annealing treatment at 588℃ for 11 minutes at grain size of 44.7 mm can be considered to be the optimum annealing treatment for the 40% cold drawn 0.12 wt% C steel and 539℃ for 17 minutes at grain size of 19.5 mm for the 55% cold drawn 0.12 wt% C steel.