Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolli...Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.展开更多
The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) h...The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) high nitrogen austenitic stainless steels was investigated. The results show that the "nose" temperatures and incubation periods of the initial time-temperature-precipitation (TTP) curves of aged HNSs are found to be 850 ℃, 60 s; 850 ℃, 45 s; 850 ℃, 60 s and 900 ℃, 90 s, respectively. Based on the analysis of SAD patterns, the coarse cellular Cr2N precipitate which presents a lamellar structure has a hexagonal structure of a=0.478 nm and c=0.444 nm. The Z phase corresponding to a composition of Fe36Cr^2Mo10, is determined to be a body-centered cubic structure ofa=0.892 nm. The precipitating sensitivity presents no more difference with the nitrogen content increasing from 0.77% to 0.96%, but exhibits so obviously that the cellular precipitates nearly overspread the whole field. The addition of Mo element can restrain the TTP curves moving left and down, which means decreasing the sensitivity of aging precipitation. With increasing the cold deformation, the sensitivity of precipitation increases obviously.展开更多
The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room...The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10^-4s^-1to 1 s^-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n2and n1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.展开更多
The austenitic stainless steel SUS 304 with oxide scale was directly cold rolled at different reductions of 10%, 20% and 30% respectively. It was proved that the surface quality (lower surface roughness) of the cold...The austenitic stainless steel SUS 304 with oxide scale was directly cold rolled at different reductions of 10%, 20% and 30% respectively. It was proved that the surface quality (lower surface roughness) of the cold rolled products was achieved after subsequent annealing and pickling possesses, compared to the conventional hot rolled No. 1 product, whereas the grain size, mechanical and corrosion-resistant properties were comparable to those of the No. 1 product.展开更多
In this study,the influence of plastic deformation produced by cold rolling at reduction ratios ranging from 10% to 80% on the microstructure,mechanical properties,and pitting corrosion behavior of high-sulfur freecut...In this study,the influence of plastic deformation produced by cold rolling at reduction ratios ranging from 10% to 80% on the microstructure,mechanical properties,and pitting corrosion behavior of high-sulfur freecutting 316 LS austenitic stainless steel was investigated. The results indicate that slipping is the predominant effect and that sulfide inclusions extend along the rolling direction during the cold deformation of 316 LS. The strong austenite stability of 316 LS results in the formation of only a small quantity of deformation-induced martensite. The experimental results reveal that the strength,hardness,and yield ratio increased with increases in the reduction ratio,mainly due to work hardening,whereas the elongation decreased drastically,due to the combined effect of the work hardening and brittleness caused by the numerous sulfide inclusions. Electrochemically active sites on the surface of316 LS increased with an increased reduction ratio,which caused an increased current fluctuation in the passive zone. This also caused the breakdown potential( E_b) near the pitting zone to exhibit a gradual increase in the zigzag current shift to the left on the polarization curves. The E_b of 316 LS decreased with increases in the reduction ratio,mainly due to the extended sulfide inclusions,the increased dislocation density,and the deformation-induced martensite content.展开更多
Problems encountered in the production of low nickel austenitic stainless steel have been studied. These problems primarily include the changes to the microstructure of the slab during the heating process, the formati...Problems encountered in the production of low nickel austenitic stainless steel have been studied. These problems primarily include the changes to the microstructure of the slab during the heating process, the formation and removal of deformation - induced martensite during cold rolling, and the effects of the annealing process on the surface oxide structure. A reasonable manufacturing process has been proposed on the basis of the research results and high-quality cold-rolled strips of low nickel austenitic stainless steel have been produced.展开更多
The microstructure and mechanical properties evolution of AISI 301LN metastable austenitic stainless steels during cold rolling were investigated. A wide range of cold thickness reduction (10%-80%) was carried out in ...The microstructure and mechanical properties evolution of AISI 301LN metastable austenitic stainless steels during cold rolling were investigated. A wide range of cold thickness reduction (10%-80%) was carried out in a four-high rolling mill at ambient temperature. The X-ray and Feritscope MP30 were used to identify the strain-induced α′-martensite phase and its volume fraction, respectively. The microstructure was observed by optical micrograph and the mechanical properties were determined by tensile tests and microhardness. The results show that the strain-induced α′-martensite nucleated at the shear bands intersections and the growth of α′-martensite occurred by the repeated nucleation of new embryos. The volume fraction of strain-induced α′-martensite increased with increasing the cold rolling reduction. In addition, the percentage increased in the tensile strength is the same as that of hardness. The ratio between the average tensile strength and the average microhardness was found to range between 2.82 and 3.17.展开更多
Cold-stretched pressure vessels from austenitic stainless steels (ASS) are widely used for storage and transportation of liquefied gases, and have such advantages as thin wall and light weight. Fatigue is an importa...Cold-stretched pressure vessels from austenitic stainless steels (ASS) are widely used for storage and transportation of liquefied gases, and have such advantages as thin wall and light weight. Fatigue is an important concern in these pressure vessels, which are subjected to alternative loads. Even though several codes and standards have guidelines on these pressure vessels, there are no relevant design methods on fatigue failure. To understand the fatigue properties of ASS 1.4301 (equivalents include UNS $30400 and AISI 304) in solution-annealed (SA) and cold-stretched conditions (9% strain level) and the response of fatigue properties to cold stretching (CS), low-cycle fatigue (LCF) tests were performed at room temperature, with total strain amplitudes ranging from :~0.4% to "0.8%. Martensite transformations were measured during the tests. Comparisons on cyclic stress response, cyclic stress-strain behavior, and fatigue life were carried out between SA and CS materials. Results show that CS reduces the initial hardening stage, but prolongs the softening period in the cyclic stress response. Martensite transformation helps form a stable regime and subsequent secondary hardening. The stresses of monotonic and cyclic stress-strain curves are improved by CS, which leads to a lower plastic strain and a much higher elastic strain. The fatigue resistance of the CS material is better than that of the SA material, which is approximately 1 - 103 to 2 - 104 cycles. The S-N curve of the ASME standard for ASS is compared with the fatigue data and is justified to be suitable for the fatigue design of cold-stretched pressure vessels. However, considering the CS material has a better fatigue resistance, the S-N curve will be more conservative. The present study would be helpful in making full use of the advantages of CS to develop a new S-N curve for fatigue design of cold-stretched pressure vessels.展开更多
Due to the excellent mechanical properties, good corrosion resistance, high biocompatibility and nickel- free character, the high nitrogen nickel-free austenitic stainless steel (HNASS) becomes an ideally alternativ...Due to the excellent mechanical properties, good corrosion resistance, high biocompatibility and nickel- free character, the high nitrogen nickel-free austenitic stainless steel (HNASS) becomes an ideally alternative material for coronary stents. Stent implantation works in harsh blood environment after a balloon dilatation, i.e., the material is used in a corrosive environment with a permanent deforma- tion. The present study attempts to investigate effects of pre-straining on high-cycle fatigue behavior and corrosion fatigue behavior of HNASS in Hank's solution and the relevant mechanism for coronary stents application. It is found that higher pre-straining on HNASS results in higher strength and maintains almost same corrosion resistance. Fatigue limit of 0% HNASS is 550 MPa, while corrosion fatigue limit is 475 MPa. And improvement in fatigue limit of 20% and 35% pre-strained HNASS is in comparison with the 0% HNASS, while corrosion would undermine the fatigue behavior of HNASS. In a suitable range, the pre- straining had a beneficial effect on corrosion fatigue strength of HNASS, such as nearly 300 MPa improved with 20% cold deformation. This result provides a good reference for predicting the life of HNASS stent and as well its design.展开更多
The effects of cold deformation on the formation of strain induced α’ martensite and mechanical properties of an austenitic stainless steel have been examined.X-ray diffraction analysis has revealed that 30% and 40%...The effects of cold deformation on the formation of strain induced α’ martensite and mechanical properties of an austenitic stainless steel have been examined.X-ray diffraction analysis has revealed that 30% and 40% cold rolling have resulted in the formation of 24% and 31.5% martensite respectively.Microstructural investigation has demonstrated that the formation of martensite is enhanced with increase in the percent deformation at 0 ℃.Investigation of mechanical properties reveals that hardness,yield strength and tensile strength values increase where as percent elongation drops with increasing deformation.The fractographic observation corroborates the tensile results.Examination of sub-surface at the fractured end of the tensile sample manifests that void/microcrack nucleation occurs in the interfacial regions of the martensite phase as well as at the austenite-martensite interface展开更多
基金Project supported by the National Natural Science Foundations of China (Grant Nos.51371089 and 51201068)the National Key Basic Research and Development Program of China (Grant No.2010CB631001)
文摘Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.
基金Project(51304041) supported by the National Natural Science Foundation of ChinaProject(N100402015) supported by Fundamental Research Funds for the Central Universities of China+1 种基金Project(2012AA03A502) supported by the National High Technology Research and Development Program of ChinaProject supported by Program for Liaoning Innovative Research Team in University,China
文摘The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) high nitrogen austenitic stainless steels was investigated. The results show that the "nose" temperatures and incubation periods of the initial time-temperature-precipitation (TTP) curves of aged HNSs are found to be 850 ℃, 60 s; 850 ℃, 45 s; 850 ℃, 60 s and 900 ℃, 90 s, respectively. Based on the analysis of SAD patterns, the coarse cellular Cr2N precipitate which presents a lamellar structure has a hexagonal structure of a=0.478 nm and c=0.444 nm. The Z phase corresponding to a composition of Fe36Cr^2Mo10, is determined to be a body-centered cubic structure ofa=0.892 nm. The precipitating sensitivity presents no more difference with the nitrogen content increasing from 0.77% to 0.96%, but exhibits so obviously that the cellular precipitates nearly overspread the whole field. The addition of Mo element can restrain the TTP curves moving left and down, which means decreasing the sensitivity of aging precipitation. With increasing the cold deformation, the sensitivity of precipitation increases obviously.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.51371089 and 51401083)
文摘The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10^-4s^-1to 1 s^-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n2and n1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.
文摘The austenitic stainless steel SUS 304 with oxide scale was directly cold rolled at different reductions of 10%, 20% and 30% respectively. It was proved that the surface quality (lower surface roughness) of the cold rolled products was achieved after subsequent annealing and pickling possesses, compared to the conventional hot rolled No. 1 product, whereas the grain size, mechanical and corrosion-resistant properties were comparable to those of the No. 1 product.
文摘In this study,the influence of plastic deformation produced by cold rolling at reduction ratios ranging from 10% to 80% on the microstructure,mechanical properties,and pitting corrosion behavior of high-sulfur freecutting 316 LS austenitic stainless steel was investigated. The results indicate that slipping is the predominant effect and that sulfide inclusions extend along the rolling direction during the cold deformation of 316 LS. The strong austenite stability of 316 LS results in the formation of only a small quantity of deformation-induced martensite. The experimental results reveal that the strength,hardness,and yield ratio increased with increases in the reduction ratio,mainly due to work hardening,whereas the elongation decreased drastically,due to the combined effect of the work hardening and brittleness caused by the numerous sulfide inclusions. Electrochemically active sites on the surface of316 LS increased with an increased reduction ratio,which caused an increased current fluctuation in the passive zone. This also caused the breakdown potential( E_b) near the pitting zone to exhibit a gradual increase in the zigzag current shift to the left on the polarization curves. The E_b of 316 LS decreased with increases in the reduction ratio,mainly due to the extended sulfide inclusions,the increased dislocation density,and the deformation-induced martensite content.
文摘Problems encountered in the production of low nickel austenitic stainless steel have been studied. These problems primarily include the changes to the microstructure of the slab during the heating process, the formation and removal of deformation - induced martensite during cold rolling, and the effects of the annealing process on the surface oxide structure. A reasonable manufacturing process has been proposed on the basis of the research results and high-quality cold-rolled strips of low nickel austenitic stainless steel have been produced.
基金Item Sponsored by National High-Tech Research and Development Program (863 Program) of China (2008AA030702)
文摘The microstructure and mechanical properties evolution of AISI 301LN metastable austenitic stainless steels during cold rolling were investigated. A wide range of cold thickness reduction (10%-80%) was carried out in a four-high rolling mill at ambient temperature. The X-ray and Feritscope MP30 were used to identify the strain-induced α′-martensite phase and its volume fraction, respectively. The microstructure was observed by optical micrograph and the mechanical properties were determined by tensile tests and microhardness. The results show that the strain-induced α′-martensite nucleated at the shear bands intersections and the growth of α′-martensite occurred by the repeated nucleation of new embryos. The volume fraction of strain-induced α′-martensite increased with increasing the cold rolling reduction. In addition, the percentage increased in the tensile strength is the same as that of hardness. The ratio between the average tensile strength and the average microhardness was found to range between 2.82 and 3.17.
基金Project supported by the National Key Technology R&D Program (No.2011BAK06B0205)the International Science and Technology Cooperation Project (No. 2010DFB42960)the Key Technology Innovation Team of Zhejiang Province (No. 2010R50001),China
文摘Cold-stretched pressure vessels from austenitic stainless steels (ASS) are widely used for storage and transportation of liquefied gases, and have such advantages as thin wall and light weight. Fatigue is an important concern in these pressure vessels, which are subjected to alternative loads. Even though several codes and standards have guidelines on these pressure vessels, there are no relevant design methods on fatigue failure. To understand the fatigue properties of ASS 1.4301 (equivalents include UNS $30400 and AISI 304) in solution-annealed (SA) and cold-stretched conditions (9% strain level) and the response of fatigue properties to cold stretching (CS), low-cycle fatigue (LCF) tests were performed at room temperature, with total strain amplitudes ranging from :~0.4% to "0.8%. Martensite transformations were measured during the tests. Comparisons on cyclic stress response, cyclic stress-strain behavior, and fatigue life were carried out between SA and CS materials. Results show that CS reduces the initial hardening stage, but prolongs the softening period in the cyclic stress response. Martensite transformation helps form a stable regime and subsequent secondary hardening. The stresses of monotonic and cyclic stress-strain curves are improved by CS, which leads to a lower plastic strain and a much higher elastic strain. The fatigue resistance of the CS material is better than that of the SA material, which is approximately 1 - 103 to 2 - 104 cycles. The S-N curve of the ASME standard for ASS is compared with the fatigue data and is justified to be suitable for the fatigue design of cold-stretched pressure vessels. However, considering the CS material has a better fatigue resistance, the S-N curve will be more conservative. The present study would be helpful in making full use of the advantages of CS to develop a new S-N curve for fatigue design of cold-stretched pressure vessels.
基金supported financially by the National Natural Science Foundation of China (No. 31370976)
文摘Due to the excellent mechanical properties, good corrosion resistance, high biocompatibility and nickel- free character, the high nitrogen nickel-free austenitic stainless steel (HNASS) becomes an ideally alternative material for coronary stents. Stent implantation works in harsh blood environment after a balloon dilatation, i.e., the material is used in a corrosive environment with a permanent deforma- tion. The present study attempts to investigate effects of pre-straining on high-cycle fatigue behavior and corrosion fatigue behavior of HNASS in Hank's solution and the relevant mechanism for coronary stents application. It is found that higher pre-straining on HNASS results in higher strength and maintains almost same corrosion resistance. Fatigue limit of 0% HNASS is 550 MPa, while corrosion fatigue limit is 475 MPa. And improvement in fatigue limit of 20% and 35% pre-strained HNASS is in comparison with the 0% HNASS, while corrosion would undermine the fatigue behavior of HNASS. In a suitable range, the pre- straining had a beneficial effect on corrosion fatigue strength of HNASS, such as nearly 300 MPa improved with 20% cold deformation. This result provides a good reference for predicting the life of HNASS stent and as well its design.
文摘The effects of cold deformation on the formation of strain induced α’ martensite and mechanical properties of an austenitic stainless steel have been examined.X-ray diffraction analysis has revealed that 30% and 40% cold rolling have resulted in the formation of 24% and 31.5% martensite respectively.Microstructural investigation has demonstrated that the formation of martensite is enhanced with increase in the percent deformation at 0 ℃.Investigation of mechanical properties reveals that hardness,yield strength and tensile strength values increase where as percent elongation drops with increasing deformation.The fractographic observation corroborates the tensile results.Examination of sub-surface at the fractured end of the tensile sample manifests that void/microcrack nucleation occurs in the interfacial regions of the martensite phase as well as at the austenite-martensite interface