In the high-speed cold tandem rolling process of thin plate,chatter or slip instability gives rise to the deterioration of equipment and product quality.Macroscopic instability behavior is closely related to interfaci...In the high-speed cold tandem rolling process of thin plate,chatter or slip instability gives rise to the deterioration of equipment and product quality.Macroscopic instability behavior is closely related to interfacial friction-lubrication con-dition which is generally characterized by the friction coefficient.However,with higher and higher speed requirements,the commonly used model of friction coefficient is no longer applicable and accurate.A novel approach is suggested to calculate the speed-dependent friction coefficient,in which the viscosity-pressure-temperature effects of the lubricant,surface roughness states of work rolls and rolled piece are comprehensively involved and the mixed flm lubrication theory is applied.Subsequently,the influences of friction coefficient on the instability of slip and chatter are investigated for a five-stand cold tandem rolling mill.On one side,the critical friction coefficient for each stand is determined by calculating the corresponding slip factor;on the other hand,the friction coefficient varying with rolling speed is combined with the model of theoretical critical rolling speed presented under constant friction coefficient,so that the speed threshold is determined.Furthermore,the stable and unstable regions corresponding to the rear three stands are individually discussed,and the technical strategies are proposed to suppress both slip and chatter frequently occurring in the actual rolling process.展开更多
The rolling force model for cold tandem mill was put forward by using the Elman dynamic recursive network method,based on the actual measured data.Furthermore,a good assumption is put forward,which brings a full unive...The rolling force model for cold tandem mill was put forward by using the Elman dynamic recursive network method,based on the actual measured data.Furthermore,a good assumption is put forward,which brings a full universe of discourse self-adjusting factor fuzzy control,closed-loop adjusting,based on error feedback and expertise into a rolling force prediction model,to modify prediction outputs and improve prediction precision and robustness.The simulated results indicate that the method is highly effective and the prediction precision is better than that of the traditional method.Predicted relative error is less than ±4%,so the prediction is high precise for the cold tandem mill.展开更多
In the process of cold tandem rolling,chatter instability leads to serious impacts on enhancing rolling speed,improving product quality,reducing production cost and realizing intellectualization.Chatter occurs with th...In the process of cold tandem rolling,chatter instability leads to serious impacts on enhancing rolling speed,improving product quality,reducing production cost and realizing intellectualization.Chatter occurs with the rolling speed up to a certain threshold value,but the critical speed is determined by both product specifications and rolling schedules.A 5-stand cold tandem rolling mill whose first three stands and subsequent two stands,respectively,have four and six rolls was investigated by formulating its dynamic equations with the corresponding structure-process coupling.By applying the stability-based calculation model about the critical rolling speed in each stand,the system dynamic responses around the critical rolling speed were simulated,and the system eigenvalues which represent instability and characteristic frequencies were figured out.Thereafter,via combining the critical rolling speeds with the system dynamic behavior,a dynamics-based optimization model of rolling schedule for the 5-stand cold tandem system was proposed for the purposes of both the chatter suppression and rolling speed increase.In the optimization model,eight rolling technique parameters(four strip thicknesses and four tensions between the upstream and downstream stands)were taken as design variables,and the constraint conditions were set as no chatter instability in all five stands,and the optimization goal was to maximize the outlet speed of the final stand.The pattern search method was introduced to solve the optimization model.By applying such a dynamics-based optimization model for the 5-stand cold tandem rolling process,the chatter instability was suppressed effectively and the rolling efficiency was improved considerably;therefore,such an optimization model is expected to be valuable for intelligent manufacturing of rolling process.展开更多
The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a la...The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.展开更多
In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a p...In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a proposal to regulate the network's weights using bothGA and BP algorithms is suggested. An integrated network system of MGA (mended genetic algorithms)and BP algorithms has been established. The MGA-BP network's functions consist of optimizing GAperformance parameters, the network's structural parameters, performance parameters, and regulatingthe network's weights using both GA and BP algorithms. Rolling forces of 4-stand tandem cold stripmill are predicted by the MGA-BP network, and good results are obtained.展开更多
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r...In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.展开更多
SmartCrown was a new system developed by VAI for improving the strip profile and flatness control first applied in 1700 mm tandem cold rolling mills at Wuhan Iron & Steel (Group) Corporation (WISCO). After tracin...SmartCrown was a new system developed by VAI for improving the strip profile and flatness control first applied in 1700 mm tandem cold rolling mills at Wuhan Iron & Steel (Group) Corporation (WISCO). After tracing and testing, the application of the conventional crown backup roll matching the SmartCrown work roll of the production mill led to heavy and nonuniform wear, and the edge spalling of the backup roll often occurred. A 3-dimension finite element model of roll stacks was established, which was used to analyze the above-mentioned problems, and it was found that the main reason was the highly nonuniform contact pressure distribution between the work roll and the backup roll. A new FSR (flexible shape backup roll) was developed and applied in 1700 mm tandem cold rolling mills. A lot of good actual effects of FSR, such as evident improvement in profile and flatness of strips, non-occurring edge spalling, wear uniform, and remarkable decrease in roll consumption were validated by long-term industrial applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51775038).
文摘In the high-speed cold tandem rolling process of thin plate,chatter or slip instability gives rise to the deterioration of equipment and product quality.Macroscopic instability behavior is closely related to interfacial friction-lubrication con-dition which is generally characterized by the friction coefficient.However,with higher and higher speed requirements,the commonly used model of friction coefficient is no longer applicable and accurate.A novel approach is suggested to calculate the speed-dependent friction coefficient,in which the viscosity-pressure-temperature effects of the lubricant,surface roughness states of work rolls and rolled piece are comprehensively involved and the mixed flm lubrication theory is applied.Subsequently,the influences of friction coefficient on the instability of slip and chatter are investigated for a five-stand cold tandem rolling mill.On one side,the critical friction coefficient for each stand is determined by calculating the corresponding slip factor;on the other hand,the friction coefficient varying with rolling speed is combined with the model of theoretical critical rolling speed presented under constant friction coefficient,so that the speed threshold is determined.Furthermore,the stable and unstable regions corresponding to the rear three stands are individually discussed,and the technical strategies are proposed to suppress both slip and chatter frequently occurring in the actual rolling process.
基金Item Sponsored by Natural Science Foundation of Hebei Province of China(E2004000206)National Natural Science Foundation of China(50675186)
文摘The rolling force model for cold tandem mill was put forward by using the Elman dynamic recursive network method,based on the actual measured data.Furthermore,a good assumption is put forward,which brings a full universe of discourse self-adjusting factor fuzzy control,closed-loop adjusting,based on error feedback and expertise into a rolling force prediction model,to modify prediction outputs and improve prediction precision and robustness.The simulated results indicate that the method is highly effective and the prediction precision is better than that of the traditional method.Predicted relative error is less than ±4%,so the prediction is high precise for the cold tandem mill.
基金supported by the National Natural Science Foundation of China(No.51775038).
文摘In the process of cold tandem rolling,chatter instability leads to serious impacts on enhancing rolling speed,improving product quality,reducing production cost and realizing intellectualization.Chatter occurs with the rolling speed up to a certain threshold value,but the critical speed is determined by both product specifications and rolling schedules.A 5-stand cold tandem rolling mill whose first three stands and subsequent two stands,respectively,have four and six rolls was investigated by formulating its dynamic equations with the corresponding structure-process coupling.By applying the stability-based calculation model about the critical rolling speed in each stand,the system dynamic responses around the critical rolling speed were simulated,and the system eigenvalues which represent instability and characteristic frequencies were figured out.Thereafter,via combining the critical rolling speeds with the system dynamic behavior,a dynamics-based optimization model of rolling schedule for the 5-stand cold tandem system was proposed for the purposes of both the chatter suppression and rolling speed increase.In the optimization model,eight rolling technique parameters(four strip thicknesses and four tensions between the upstream and downstream stands)were taken as design variables,and the constraint conditions were set as no chatter instability in all five stands,and the optimization goal was to maximize the outlet speed of the final stand.The pattern search method was introduced to solve the optimization model.By applying such a dynamics-based optimization model for the 5-stand cold tandem rolling process,the chatter instability was suppressed effectively and the rolling efficiency was improved considerably;therefore,such an optimization model is expected to be valuable for intelligent manufacturing of rolling process.
基金Supported by National Natural Science Foundation of China(Grant Nos.51174057,51274062)National High Technology Research and Development Program of China(863 Program,Grant No.2012AA03A503)
文摘The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.
文摘In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a proposal to regulate the network's weights using bothGA and BP algorithms is suggested. An integrated network system of MGA (mended genetic algorithms)and BP algorithms has been established. The MGA-BP network's functions consist of optimizing GAperformance parameters, the network's structural parameters, performance parameters, and regulatingthe network's weights using both GA and BP algorithms. Rolling forces of 4-stand tandem cold stripmill are predicted by the MGA-BP network, and good results are obtained.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(N110307001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.
文摘SmartCrown was a new system developed by VAI for improving the strip profile and flatness control first applied in 1700 mm tandem cold rolling mills at Wuhan Iron & Steel (Group) Corporation (WISCO). After tracing and testing, the application of the conventional crown backup roll matching the SmartCrown work roll of the production mill led to heavy and nonuniform wear, and the edge spalling of the backup roll often occurred. A 3-dimension finite element model of roll stacks was established, which was used to analyze the above-mentioned problems, and it was found that the main reason was the highly nonuniform contact pressure distribution between the work roll and the backup roll. A new FSR (flexible shape backup roll) was developed and applied in 1700 mm tandem cold rolling mills. A lot of good actual effects of FSR, such as evident improvement in profile and flatness of strips, non-occurring edge spalling, wear uniform, and remarkable decrease in roll consumption were validated by long-term industrial applications.