Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broile...Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.展开更多
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis...The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.展开更多
The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhi...The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.展开更多
The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on ed...The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on edaphic parameters and grassland productivity has been extensively studied,while its decomposition processes and relevant mechanisms in this area remain poorly understood.We conducted a three-year litter decomposition experiment in the Gansu Gannan Grassland Ecosystem National Observation and Research Station,an alpine meadow ecosystem on the QTP,to investigate changes in litter enzyme activities and bacterial and fungal communities,and clarify how these critical factors regulated the decomposition of dominant plant Elymus nutans(E.nutans)litter.The results showed that cellulose and hemicellulose,which accounted for 95%of the initial lignocellulose content,were the main components in E.nutans litter decomposition.The litter enzyme activities ofβ-1,4-glucosidase(BG),β-1,4-xylosidase(BX),andβ-D-cellobiosidase(CBH)decreased with decomposition while acid phosphatase,leucine aminopeptidase,and phenol oxidase increased with decomposition.We found that both litter bacterial and fungal communities changed significantly with decomposition.Furthermore,bacterial communities shifted from copiotrophic-dominated to oligotrophic-dominated in the late stage of litter decomposition.Partial least squares path model revealed that the decomposition of E.nutans litter was mainly driven by bacterial communities and their secreted enzymes.Bacteroidota and Proteobacteria were important producers of enzymes BG,BX,and CBH,and their relative abundances were tightly positively related to the content of cellulose and hemicellulose,indicating that Bacteroidota and Proteobacteria are the main bacterial taxa of the decomposition of E.nutans litter.In conclusion,this study demonstrates that bacterial communities are the main driving forces behind the decomposition of E.nutans litter,highlighting the vital roles of bacterial communities in affecting the ecosystem functions of the QTP by regulating dominant plant litter decomposition.展开更多
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s...It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.展开更多
Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes we...Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes were cloned and identified from P.yunnanensis seedlings for thefirst time,namely,PyPAL-1,PyPAL-2,and PyPAL-3.Our results indicated that the open-reading frames of PyPAL genes were 2184,2157,and 2385 bp.Phylogenetic tree analysis revealed that PyPALs have high homology with other known PAL genes in other plants.In vitro enzymatic analysis showed that all three PyPAL recombinant proteins could catalyze the deamination of L-phenylalanine to form trans-cinnamic acid,but only PAL1 and PAL2 can catalyze the conversion of L-tyrosine toρ-coumaric acid.Three PyPAL genes were expressed in different tissues in 1-year-old P.yunnanensis,and such genes had different expression patterns.This study lays a foundation for further understanding of the biosynthesis of secondary metabolites in P.yunnanensis.展开更多
An in vitro study was conducted to investigate the impacts of microplastics on enzyme activities and soil bacteria. The study included four different treatments of microplastics including a control. Different levels o...An in vitro study was conducted to investigate the impacts of microplastics on enzyme activities and soil bacteria. The study included four different treatments of microplastics including a control. Different levels of microplastics were applied to the soil ranging from 0% to 5%, to assess the impacts of microplastics on soil enzymes and subsequent soil bacteria. After 30 days of incubation, the soil samples were collected and growth parameters of bacteria were assessed. Activities of β-glucosidase, urease and dehydrogenase enzymes were also determined. Our results showed that the presence of microplastics in the soil significantly reduced bacterial population together with bacterial strains. The activities of β-glucosidase, urease and dehydrogenase enzymes were reduced significantly to approximately 32%, 40% and 50% in microplastics treated soils respectively. Concentration of microplastic has a role to play towards this direction;the higher the concentration of microplastic the greater is the impact on enzymes and soil bacteria. The present study on the microbial soil health vis-à-vis microplastic application indicates that the material can have negative effect on the soil bacterial population of and thus ultimately may jeopardize soil health and crop production.展开更多
Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in...Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation.展开更多
The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising no...The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising north(N)and south(S)exposure along the altitudinal gradient(600,800,1000 and 1200 m a.s.l.)was set up.By comparing the properties of decomposing deadwood and those of the soils located directly beneath the decaying wood we drew conclusions about the role of deadwood in the shaping of soil organic matter fractions and soil carbon storage in different climate conditions.The basic properties,enzymatic activity and fractions of soil organic matter(SOM)were determined in deadwood and affected directly by the components released from decaying wood.Heavily decomposed deadwood impacts soil organic matter stabilization more strongly than the less decayed deadwood and the light fraction of SOM is more sensitive to deadwood effects than the heavy fraction regardless of the location in the altitude gradient.Increase in SOM mineral-associated fraction C content is more pronounced in soils under the influence of deadwood located in lower locations of warmer exposure.Nutrients released from decaying wood stimulate the enzymatic activity of soils that are within the range of deadwood influence.展开更多
[Objectives]This study was conducted to evaluate the effects of carbon nanomaterials on soil ecosystem and explore the ecological risks of environmental exposure of carbon nanomaterials. [Methods] The effects of carbo...[Objectives]This study was conducted to evaluate the effects of carbon nanomaterials on soil ecosystem and explore the ecological risks of environmental exposure of carbon nanomaterials. [Methods] The effects of carbon nanomaterials on soil enzyme activity was studied by adding graphene, graphene oxide and carbon nanotubes to turfgrass soil. [Results] Compared with the control(CK), the activity of soil protease, sucrase, alkaline phosphatase and catalase was not significantly affected by carbon nanomaterials. Under the treatment of carbon nanotubes, urease activity was significantly lower than that of graphene and graphene oxide, and dehydrogenase activity was significantly lower than that of the CK, graphene and graphene oxide. [Conclusions] This study provides a theoretical basis for the safe application of carbon nanomaterials.展开更多
[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity...[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County.展开更多
Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomat...Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomato rotation for one year (1a), three years (3a), five years (5a), seven years (7a) and ten years (10a), respectively. The major objective was to analyze the optimal rotation years of rice-cherry tomato from soil perspective, so as to provide theoretical basis for effectively avoiding continuous cropping obstacles of cherry tomato via studying the response characteristics of soil physicochemical properties, nutrient contents and enzyme activities to planting years of rice-cherry tomato rotation system. The results were as follows: 1) Soil pH value was increased year by year during 1a to 5a, reached the highest value 5.32 at 5a. However, soil acidity was sharply enhanced during 7a to 10a (P P •kg<sup>-1</sup> at 5a. 3) The content of soil available phosphorus was increased year by year with increasing of crop rotation years, and increased by 110% to 173% during 3a to 10a (P P P < 0.05). In conclusion, long-term single rotation pattern of rice-cherry tomato would aggravate soil acidification, prompt soil nutrient imbalance and reduce soil enzyme activity. 5a to 7a would be the appropriate rotation period for rice-cherry tomato, or else it would reduce soil quality, resulting in a new continuous cropping obstacle of cherry tomato.展开更多
[Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carr...[Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carried out at the Modern Agriculture Demonstration Base of Gaoping Village,Gaoping Town,Suichang County,Zhejiang Province.Bamboo charcoal was applied at four different levels:T_(0)(no bamboo charcoal),T_(1)(1125 kg/hm^(2)bamboo charcoal),T_(2)(2250 kg/hm^(2)bamboo charcoal)and T_(3)(3375 kg/hm^(2)bamboo charcoal).Soil physicochemical properties and enzyme activities in different treatments were measured.[Results]The soil fungal,bacterial and actinomycete populations increased significantly in the soils surrounding capsicum roots.The bacterial population,fungal population and fungus/bacterium ratio peaked in Treatment T_(2),up to 7.32×10^(6)cfu/g,2.65×10^(4)cfu/g and 0.36×10^(-2),respectively.The effect of bamboo charcoal in promotingβ-glucoside,catalase,acid phosphatase and sucrase activities was T_(2)>T_(3)>T_(1)>T_(0).With bamboo charcoal increasing,the bacterium population,fungus population,fungus/bacterium ratio,β-glucoside,catalase,acid phosphatase and sucrase activities all increased at first and then decreased.T_(2)treatment showed the best effects in improving soil physicochemical properties and microbial community structure.[Conclusions]Bamboo charcoal significantly improves soil enzyme activity and increases soil microbial population,and thus has important positive effects on the soil ecosystem.展开更多
Peach fruits [Prumus persica (L.) Batsch, cv. Yuhuasanhao] were used as materials to investigate the changes of reactive oxygen species (ROS) and related enzymes in mitochondria respiration during storage and then...Peach fruits [Prumus persica (L.) Batsch, cv. Yuhuasanhao] were used as materials to investigate the changes of reactive oxygen species (ROS) and related enzymes in mitochondria respiration during storage and then their influence on senescence of harvested Peach fruits was studied. The results showed that low temperature (5℃) strongly inhibited the reduction of firmness and the increase in respiration rate. During storage at ambient temperature (20℃), ROS had a cumulative process while malondialdehye (MDA) content continued to increase in associated with enhanced membrane lipid peroxidation. Lipoxygenase (LOX) activity was strongly inhibited under the low temperature condition. The activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), and Ca^2+-ATPase declined to a certain extent at ambient temperature, while they showed higher activities at low temperature, which may be related to lower membrane lipid peroxidation at low temperature. Higher Ca^2+ content at ambient temperature may be responsible for impairment of mitochondrial function, thus, leading to fruit senescence. The results showed that under low temperature condition, the low accumulation of ROS and the low level of membrane lipid peroxidation could maintain the function of mitochondria that would help to delay the senescence of peach fruits. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration. It can be inferred that the low temperature helps to delay senescence of peach fruits via suppression of ROS and related enzymes, maintain better homeostasis of Ca^2+ in mitochondria and thus better mitochondrial functions.展开更多
Cold acclimation is associated with many metabolic changes that lead to an increase of freezing tolerance. In order to investigate the biochemical process of cold acclimation in Ammopiptanthus mongolicus, seedlings we...Cold acclimation is associated with many metabolic changes that lead to an increase of freezing tolerance. In order to investigate the biochemical process of cold acclimation in Ammopiptanthus mongolicus, seedlings were acclimated at 2℃ under 16-h photoperiod (150 μmol·m^-2·s^-1 photosynthetically active radiation) for 14 d. Freezing tolerance in seedlings increased after 14 d of cold-hardening. Contents of protein, proline and solute carbohydrate in cotyledon increased after cold acclimation. Patterns of isozymes of superoxide dismutase (SOD), peroxidase, catalase and polyphenol oxidase (PPO) were investigated. The activities of SOD, peroxidase and PPO in cold acclimated plants were increased during cold-hardening. We deduced that compatible solutes and antioxidant enzymes play important roles in development of freezing tolerance during cold acclimation in this evergreen woody plant.展开更多
As one of the most severe environmental stresses, freezing stress can determine native flora in nature and severely reduce crop production. Many mechanisms have been proposed to explain the damage induced by freezing-...As one of the most severe environmental stresses, freezing stress can determine native flora in nature and severely reduce crop production. Many mechanisms have been proposed to explain the damage induced by freezing-thawing cycle, and oxidative stress caused by uncontrollable production of harmful reactive oxygen species (ROS) are partially contributed to causing the injury. Plants in temperate regions have evolved a unique but effective metabolism of protecting themselves called cold acclimation. Cold-acclimating plants undergo a complex but orchestrated metabolic process to increase cold hardness triggered by exposure to low temperature and shortened photoperiod and achieve the maximum freezing tolerance by a concerted regulation and expression of a number of cold responsive genes. A complicated enzymatic system have been evolved in plants to scavenge the ROS to protect themselves from oxidative stress, therefore, cold-acclimating plants are expected to increase the de novo synthesis of the genes of antioxidant genes. Indeed, many antioxidant genes increase the expression levels in response to low temperature. Furthermore, the higher expression of many antioxidant enzymes are positively correlated to inducing higher tolerance levels against freezing. All the information summarized here can be applied for developing crop and horticultural plants to have more freezing tolerance for higher production with better quality. There have been extensive studies on the activities of antioxidant enzymes and the gene regulation, however, more researches will be required in near future to elucidate the most effective antioxidant enzymes to induce highest freezing tolerance in a crop plant in a transformation process or a breeding program.展开更多
This study aimed to solve the issues in safe wintering of alfalfa in the north of China. The^(60)Co-γ rays, ultraviolet and EMS were used to mutagenize seeds of 4 cultivars of alfalfa to investigate the effects of mu...This study aimed to solve the issues in safe wintering of alfalfa in the north of China. The^(60)Co-γ rays, ultraviolet and EMS were used to mutagenize seeds of 4 cultivars of alfalfa to investigate the effects of mutagens on antioxidant enzymes activity and cold resistance of alfalfa. The results showed that after the mutagenic treatment, the activity of the three kinds of antioxidant enzymes basically showed upward trends.^(60)Co-γ radiation increased the activity of SOD; ultraviolet radiation decreased the activity of SOD; and low-concentration EMS promoted and high-concentration EMS inhibited the activity of SOD. The activity of POD and CAT decreased with the increased radiation dose of^(60)Co-γ, but increased with the increased radiation dose of ultraviolet. The effects of EMS treatment on the activity of POD and CAT differed among different alfalfa cultivars. The concentration of MDA reduced under 30-min, 60-min ultraviolet treatment and 0.4% EMS treatment. According to the subordinate function values of various indices, it could be concluded that 150 Gy of^(60)Co-γ radiation, 90 min of ultraviolet radiation, and 0.4% of EMS were more conducive to improving the cold resistance of alfalfa. This study will provide a theoretical basis for the research on adaptability and cold resistance of alfalfa in rigid cold region and a technical reference for the breeding of high-yield, highquality and cold-resistant alfalfa cultivars.展开更多
The novel modifications of substrate-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis that can be used for the detection of proteases and its activators are reported. The protease/activator samples...The novel modifications of substrate-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis that can be used for the detection of proteases and its activators are reported. The protease/activator samples were separated on a protein substrate-SDS-polyacrylamide gel. To detect plasminogen activators fibrinogen and Glu-plasminogen were incorporated into the SDS-PAG followed by 1 h incubation at 37?C in thrombin solution (1 NIH/ml). After electrophoresis the gel was stained according to the standard protocol. To detect fibrin-unspecific plasminogen activators from snake venom incubation in thrombin solution was substituted for 12 h incubation in 50 mM Tris-HCl (pH 7.4). To detect fibrinogen-degrading enzymes fibrinogen-containing gel was used. Activity of protease/activator was visualized in the gel as clear bands against the dark background. These new techniques offer several advantages including determination of the quantity and activity of t-PA and urokinase, however cannot be recommended for precise quantification of activators;the total procedure is quite quick and simple;method is convenient tool for detection of novel protein-protein interactions in haemostasis system;the sensitivity of the method is ≤0.01 IU per track.展开更多
Assays of stress enzymes related to active oxygen species were performed by using an in vitro preparation from the liver of a monkey (Japanese Macaque). Ge-132, an organic germanium compound, viz. poly-trans-[(2-carbo...Assays of stress enzymes related to active oxygen species were performed by using an in vitro preparation from the liver of a monkey (Japanese Macaque). Ge-132, an organic germanium compound, viz. poly-trans-[(2-carboxyethyl) germasesquioxane] [(GeCH2CH2COOH)2O3]n, suppressed the activities of NADH-dependent oxidase and NADPH-dependent oxidase [NAD(P)H-OD] and xanthine oxidase (XOD) as superoxide-forming enzymes, while promoting the activities of superoxide dismutase (SOD) as a superoxide-scavenging enzyme and catalase (CAT) as an enzyme responsible for degradation of hydrogen peroxide (H2O2). The evidence suggests that the levels of active oxygen species such as and H2O2 would be reduced by Ge-132. The possible connection between Ge-132 and activities of stress enzymes is discussed on the basis of these results.展开更多
基金financially supported by the National Natural Science Foundation of China(32102559)the Jiangsu Shuang Chuang Tuan Dui Program,China(JSSCTD202147)the Jiangsu Shuang Chuang Ren Cai Program,China(JSSCRC2021541)。
文摘Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.
基金National Natural Science Foundation of China (52394195)Joint research program for ecological conservation and high-quality development of the Yellow River Basin (2022-YRUC-01-0304).
文摘The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.
基金funded by the Natural Science Foundation of China(No.41807041)the Science and Technology Research Project of Henan Province(242102111101)the Mechanical Design,Manufacturing,and Automation Key Discipline of Henan Province(JG[2018]No.119).
文摘The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.
基金funded by the National Natural Science Foundation of China(31870435)the European Union's Marie Sklodowska-Curie Action Postdoctoral Fellowship(101061660)the China Scholarship Council(202106180060).
文摘The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on edaphic parameters and grassland productivity has been extensively studied,while its decomposition processes and relevant mechanisms in this area remain poorly understood.We conducted a three-year litter decomposition experiment in the Gansu Gannan Grassland Ecosystem National Observation and Research Station,an alpine meadow ecosystem on the QTP,to investigate changes in litter enzyme activities and bacterial and fungal communities,and clarify how these critical factors regulated the decomposition of dominant plant Elymus nutans(E.nutans)litter.The results showed that cellulose and hemicellulose,which accounted for 95%of the initial lignocellulose content,were the main components in E.nutans litter decomposition.The litter enzyme activities ofβ-1,4-glucosidase(BG),β-1,4-xylosidase(BX),andβ-D-cellobiosidase(CBH)decreased with decomposition while acid phosphatase,leucine aminopeptidase,and phenol oxidase increased with decomposition.We found that both litter bacterial and fungal communities changed significantly with decomposition.Furthermore,bacterial communities shifted from copiotrophic-dominated to oligotrophic-dominated in the late stage of litter decomposition.Partial least squares path model revealed that the decomposition of E.nutans litter was mainly driven by bacterial communities and their secreted enzymes.Bacteroidota and Proteobacteria were important producers of enzymes BG,BX,and CBH,and their relative abundances were tightly positively related to the content of cellulose and hemicellulose,indicating that Bacteroidota and Proteobacteria are the main bacterial taxa of the decomposition of E.nutans litter.In conclusion,this study demonstrates that bacterial communities are the main driving forces behind the decomposition of E.nutans litter,highlighting the vital roles of bacterial communities in affecting the ecosystem functions of the QTP by regulating dominant plant litter decomposition.
基金the Key Project of the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC02020)the Major Strategic Research Project of the Chinese Academy of Engineering and Local Cooperation(2021NXZD8)the Key Research and Development Plan Project of Ningxia Hui Autonomous Region,China(2022004129003).We are grateful to the editors and anonymous reviewers for their insightful comments and suggestions in improving this manuscript.
文摘It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.
基金This study received financial support from the Youth Talents Special Project of Yunnan Province,“Xingdian Talents Support Program”(XDYC-QNRC-2022-0203)Southwest Forestry University Scientific Research Start-Up Funds(112116).
文摘Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes were cloned and identified from P.yunnanensis seedlings for thefirst time,namely,PyPAL-1,PyPAL-2,and PyPAL-3.Our results indicated that the open-reading frames of PyPAL genes were 2184,2157,and 2385 bp.Phylogenetic tree analysis revealed that PyPALs have high homology with other known PAL genes in other plants.In vitro enzymatic analysis showed that all three PyPAL recombinant proteins could catalyze the deamination of L-phenylalanine to form trans-cinnamic acid,but only PAL1 and PAL2 can catalyze the conversion of L-tyrosine toρ-coumaric acid.Three PyPAL genes were expressed in different tissues in 1-year-old P.yunnanensis,and such genes had different expression patterns.This study lays a foundation for further understanding of the biosynthesis of secondary metabolites in P.yunnanensis.
文摘An in vitro study was conducted to investigate the impacts of microplastics on enzyme activities and soil bacteria. The study included four different treatments of microplastics including a control. Different levels of microplastics were applied to the soil ranging from 0% to 5%, to assess the impacts of microplastics on soil enzymes and subsequent soil bacteria. After 30 days of incubation, the soil samples were collected and growth parameters of bacteria were assessed. Activities of β-glucosidase, urease and dehydrogenase enzymes were also determined. Our results showed that the presence of microplastics in the soil significantly reduced bacterial population together with bacterial strains. The activities of β-glucosidase, urease and dehydrogenase enzymes were reduced significantly to approximately 32%, 40% and 50% in microplastics treated soils respectively. Concentration of microplastic has a role to play towards this direction;the higher the concentration of microplastic the greater is the impact on enzymes and soil bacteria. The present study on the microbial soil health vis-à-vis microplastic application indicates that the material can have negative effect on the soil bacterial population of and thus ultimately may jeopardize soil health and crop production.
基金supported by the Key Research and Development Program of Zhejiang Province,China(2022C02008)the National Natural Science Foundation of China(31401343)+1 种基金the earmarked fund for China Agriculture Research System(CARS-01)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAASZDRW202001)。
文摘Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation.
基金financed by the National Science Centre,Poland:decision no.DEC 2020/39/B/NZ9/00372
文摘The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising north(N)and south(S)exposure along the altitudinal gradient(600,800,1000 and 1200 m a.s.l.)was set up.By comparing the properties of decomposing deadwood and those of the soils located directly beneath the decaying wood we drew conclusions about the role of deadwood in the shaping of soil organic matter fractions and soil carbon storage in different climate conditions.The basic properties,enzymatic activity and fractions of soil organic matter(SOM)were determined in deadwood and affected directly by the components released from decaying wood.Heavily decomposed deadwood impacts soil organic matter stabilization more strongly than the less decayed deadwood and the light fraction of SOM is more sensitive to deadwood effects than the heavy fraction regardless of the location in the altitude gradient.Increase in SOM mineral-associated fraction C content is more pronounced in soils under the influence of deadwood located in lower locations of warmer exposure.Nutrients released from decaying wood stimulate the enzymatic activity of soils that are within the range of deadwood influence.
基金Supported by National Natural Science Foundation of China (31870484)。
文摘[Objectives]This study was conducted to evaluate the effects of carbon nanomaterials on soil ecosystem and explore the ecological risks of environmental exposure of carbon nanomaterials. [Methods] The effects of carbon nanomaterials on soil enzyme activity was studied by adding graphene, graphene oxide and carbon nanotubes to turfgrass soil. [Results] Compared with the control(CK), the activity of soil protease, sucrase, alkaline phosphatase and catalase was not significantly affected by carbon nanomaterials. Under the treatment of carbon nanotubes, urease activity was significantly lower than that of graphene and graphene oxide, and dehydrogenase activity was significantly lower than that of the CK, graphene and graphene oxide. [Conclusions] This study provides a theoretical basis for the safe application of carbon nanomaterials.
基金Supported by Key R&D Program of the Ministry of Science and Technology of China(2017YFC0505102-4)。
文摘[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County.
文摘Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomato rotation for one year (1a), three years (3a), five years (5a), seven years (7a) and ten years (10a), respectively. The major objective was to analyze the optimal rotation years of rice-cherry tomato from soil perspective, so as to provide theoretical basis for effectively avoiding continuous cropping obstacles of cherry tomato via studying the response characteristics of soil physicochemical properties, nutrient contents and enzyme activities to planting years of rice-cherry tomato rotation system. The results were as follows: 1) Soil pH value was increased year by year during 1a to 5a, reached the highest value 5.32 at 5a. However, soil acidity was sharply enhanced during 7a to 10a (P P •kg<sup>-1</sup> at 5a. 3) The content of soil available phosphorus was increased year by year with increasing of crop rotation years, and increased by 110% to 173% during 3a to 10a (P P P < 0.05). In conclusion, long-term single rotation pattern of rice-cherry tomato would aggravate soil acidification, prompt soil nutrient imbalance and reduce soil enzyme activity. 5a to 7a would be the appropriate rotation period for rice-cherry tomato, or else it would reduce soil quality, resulting in a new continuous cropping obstacle of cherry tomato.
基金Supported by Special Fund of Lishui City for Public Interest(2021GYX11)Special Fund of Zhejiang Provincial Department of Finance for Basic Research and Development of Bamboo Charcoal-based Soil Conditioner(20180021)Key Research and Development Project of Zhejiang Province(2018C02031)。
文摘[Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carried out at the Modern Agriculture Demonstration Base of Gaoping Village,Gaoping Town,Suichang County,Zhejiang Province.Bamboo charcoal was applied at four different levels:T_(0)(no bamboo charcoal),T_(1)(1125 kg/hm^(2)bamboo charcoal),T_(2)(2250 kg/hm^(2)bamboo charcoal)and T_(3)(3375 kg/hm^(2)bamboo charcoal).Soil physicochemical properties and enzyme activities in different treatments were measured.[Results]The soil fungal,bacterial and actinomycete populations increased significantly in the soils surrounding capsicum roots.The bacterial population,fungal population and fungus/bacterium ratio peaked in Treatment T_(2),up to 7.32×10^(6)cfu/g,2.65×10^(4)cfu/g and 0.36×10^(-2),respectively.The effect of bamboo charcoal in promotingβ-glucoside,catalase,acid phosphatase and sucrase activities was T_(2)>T_(3)>T_(1)>T_(0).With bamboo charcoal increasing,the bacterium population,fungus population,fungus/bacterium ratio,β-glucoside,catalase,acid phosphatase and sucrase activities all increased at first and then decreased.T_(2)treatment showed the best effects in improving soil physicochemical properties and microbial community structure.[Conclusions]Bamboo charcoal significantly improves soil enzyme activity and increases soil microbial population,and thus has important positive effects on the soil ecosystem.
基金funded by the National Natural Science Fundation of China (30840016)the Natural Science Fundation of Jiangsu Province, China (BK 2010310)the Natural Science Fundation for Colleges and Universities in Jiangsu Province, China (10KJB550004)
文摘Peach fruits [Prumus persica (L.) Batsch, cv. Yuhuasanhao] were used as materials to investigate the changes of reactive oxygen species (ROS) and related enzymes in mitochondria respiration during storage and then their influence on senescence of harvested Peach fruits was studied. The results showed that low temperature (5℃) strongly inhibited the reduction of firmness and the increase in respiration rate. During storage at ambient temperature (20℃), ROS had a cumulative process while malondialdehye (MDA) content continued to increase in associated with enhanced membrane lipid peroxidation. Lipoxygenase (LOX) activity was strongly inhibited under the low temperature condition. The activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), and Ca^2+-ATPase declined to a certain extent at ambient temperature, while they showed higher activities at low temperature, which may be related to lower membrane lipid peroxidation at low temperature. Higher Ca^2+ content at ambient temperature may be responsible for impairment of mitochondrial function, thus, leading to fruit senescence. The results showed that under low temperature condition, the low accumulation of ROS and the low level of membrane lipid peroxidation could maintain the function of mitochondria that would help to delay the senescence of peach fruits. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration. It can be inferred that the low temperature helps to delay senescence of peach fruits via suppression of ROS and related enzymes, maintain better homeostasis of Ca^2+ in mitochondria and thus better mitochondrial functions.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.30671476 and 30271067).
文摘Cold acclimation is associated with many metabolic changes that lead to an increase of freezing tolerance. In order to investigate the biochemical process of cold acclimation in Ammopiptanthus mongolicus, seedlings were acclimated at 2℃ under 16-h photoperiod (150 μmol·m^-2·s^-1 photosynthetically active radiation) for 14 d. Freezing tolerance in seedlings increased after 14 d of cold-hardening. Contents of protein, proline and solute carbohydrate in cotyledon increased after cold acclimation. Patterns of isozymes of superoxide dismutase (SOD), peroxidase, catalase and polyphenol oxidase (PPO) were investigated. The activities of SOD, peroxidase and PPO in cold acclimated plants were increased during cold-hardening. We deduced that compatible solutes and antioxidant enzymes play important roles in development of freezing tolerance during cold acclimation in this evergreen woody plant.
文摘As one of the most severe environmental stresses, freezing stress can determine native flora in nature and severely reduce crop production. Many mechanisms have been proposed to explain the damage induced by freezing-thawing cycle, and oxidative stress caused by uncontrollable production of harmful reactive oxygen species (ROS) are partially contributed to causing the injury. Plants in temperate regions have evolved a unique but effective metabolism of protecting themselves called cold acclimation. Cold-acclimating plants undergo a complex but orchestrated metabolic process to increase cold hardness triggered by exposure to low temperature and shortened photoperiod and achieve the maximum freezing tolerance by a concerted regulation and expression of a number of cold responsive genes. A complicated enzymatic system have been evolved in plants to scavenge the ROS to protect themselves from oxidative stress, therefore, cold-acclimating plants are expected to increase the de novo synthesis of the genes of antioxidant genes. Indeed, many antioxidant genes increase the expression levels in response to low temperature. Furthermore, the higher expression of many antioxidant enzymes are positively correlated to inducing higher tolerance levels against freezing. All the information summarized here can be applied for developing crop and horticultural plants to have more freezing tolerance for higher production with better quality. There have been extensive studies on the activities of antioxidant enzymes and the gene regulation, however, more researches will be required in near future to elucidate the most effective antioxidant enzymes to induce highest freezing tolerance in a crop plant in a transformation process or a breeding program.
文摘This study aimed to solve the issues in safe wintering of alfalfa in the north of China. The^(60)Co-γ rays, ultraviolet and EMS were used to mutagenize seeds of 4 cultivars of alfalfa to investigate the effects of mutagens on antioxidant enzymes activity and cold resistance of alfalfa. The results showed that after the mutagenic treatment, the activity of the three kinds of antioxidant enzymes basically showed upward trends.^(60)Co-γ radiation increased the activity of SOD; ultraviolet radiation decreased the activity of SOD; and low-concentration EMS promoted and high-concentration EMS inhibited the activity of SOD. The activity of POD and CAT decreased with the increased radiation dose of^(60)Co-γ, but increased with the increased radiation dose of ultraviolet. The effects of EMS treatment on the activity of POD and CAT differed among different alfalfa cultivars. The concentration of MDA reduced under 30-min, 60-min ultraviolet treatment and 0.4% EMS treatment. According to the subordinate function values of various indices, it could be concluded that 150 Gy of^(60)Co-γ radiation, 90 min of ultraviolet radiation, and 0.4% of EMS were more conducive to improving the cold resistance of alfalfa. This study will provide a theoretical basis for the research on adaptability and cold resistance of alfalfa in rigid cold region and a technical reference for the breeding of high-yield, highquality and cold-resistant alfalfa cultivars.
文摘The novel modifications of substrate-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis that can be used for the detection of proteases and its activators are reported. The protease/activator samples were separated on a protein substrate-SDS-polyacrylamide gel. To detect plasminogen activators fibrinogen and Glu-plasminogen were incorporated into the SDS-PAG followed by 1 h incubation at 37?C in thrombin solution (1 NIH/ml). After electrophoresis the gel was stained according to the standard protocol. To detect fibrin-unspecific plasminogen activators from snake venom incubation in thrombin solution was substituted for 12 h incubation in 50 mM Tris-HCl (pH 7.4). To detect fibrinogen-degrading enzymes fibrinogen-containing gel was used. Activity of protease/activator was visualized in the gel as clear bands against the dark background. These new techniques offer several advantages including determination of the quantity and activity of t-PA and urokinase, however cannot be recommended for precise quantification of activators;the total procedure is quite quick and simple;method is convenient tool for detection of novel protein-protein interactions in haemostasis system;the sensitivity of the method is ≤0.01 IU per track.
文摘Assays of stress enzymes related to active oxygen species were performed by using an in vitro preparation from the liver of a monkey (Japanese Macaque). Ge-132, an organic germanium compound, viz. poly-trans-[(2-carboxyethyl) germasesquioxane] [(GeCH2CH2COOH)2O3]n, suppressed the activities of NADH-dependent oxidase and NADPH-dependent oxidase [NAD(P)H-OD] and xanthine oxidase (XOD) as superoxide-forming enzymes, while promoting the activities of superoxide dismutase (SOD) as a superoxide-scavenging enzyme and catalase (CAT) as an enzyme responsible for degradation of hydrogen peroxide (H2O2). The evidence suggests that the levels of active oxygen species such as and H2O2 would be reduced by Ge-132. The possible connection between Ge-132 and activities of stress enzymes is discussed on the basis of these results.