BACKGROUND The possible existence of an acini–islet–acinar(AIA)reflex,involving mutual amylase and insulin interactions,was investigated in the current acute experiment on pigs.AIM To confirm the existence of an AIA...BACKGROUND The possible existence of an acini–islet–acinar(AIA)reflex,involving mutual amylase and insulin interactions,was investigated in the current acute experiment on pigs.AIM To confirm the existence of an AIA reflex and justify the placement of the exocrine and endocrine pancreatic components within the same organ.METHODS The study was performed on six pigs under general anesthesia.An intravenous glucose tolerance test was performed,with a bolus infusion of 50%glucose to the jugular vein,while amylase(5000 U/kg)or vehicle intrapancreatic infusions were administered via the pancreaticoduodenalis cranialis artery during 30 min with a 1 mL/min flow rate.RESULTS The amylase infusion to pancreatic arterial circulation inhibited and delayed the insulin release peak which is usually associated with the highest value of blood glucose and is typically observed at 15 min after glucose infusion,for>1 h.The intrapancreatic infusion of the vehicle(saline)did not have any effect on the time frame of insulin release.Infusion of 1%bovine serum albumin changed the insulin release curve dramatically and prolonged the high range of insulin secretion,far beyond the glucose peak.CONCLUSION Intrapancreatic arterial infusion of amylase interrupted the integrated glucose–insulin interactions.This confirms an AIA reflex and justifies placement of the exocrine and endocrine pancreatic components within the same organ.展开更多
The filamentous fungi from the Huanghai sea sludge were screened according to their ability to produce cold-active α-amylase. The strain with the highest amylase activity was identified as Penicillium species. The ...The filamentous fungi from the Huanghai sea sludge were screened according to their ability to produce cold-active α-amylase. The strain with the highest amylase activity was identified as Penicillium species. The α-amylase purified by ammonium sulphate precipitation and column chromatography on DEAE-sepharose and sephadex G-100 shows a molecular weight of about 55000 and a pI of 4.38. The enzyme is stable in a pH range of 5.5—8.0 and has a maximum activity at pH 6.0. Compared with the α-amylase from mesophiles and thermophiles, the cold-active enzyme shows a high enzyme activity at lower temperatures and a high sensitivity at temperatures higher than 50 ℃. The optimal temperature is 40 ℃ and the activity decreases dramatically at temperatures above 50 ℃. Ca 2+ shows a significant effect on maintaining the structure and the activity of the enzyme. EDTA and Cu 2+ are its inhibitors. The products from the hydrolysis of soluble starch with the cold-active enzyme are maltose and other oligosaccharides.展开更多
[ Objective] The study was to understand the changes of amylase(AMY) and superoxide dismutase(SOD) isozymes during the ger- mination process of Emmenopterys henryi Oliv seeds. [ Metbod] By employing polyacrylamide...[ Objective] The study was to understand the changes of amylase(AMY) and superoxide dismutase(SOD) isozymes during the ger- mination process of Emmenopterys henryi Oliv seeds. [ Metbod] By employing polyacrylamide gel electrophoresis method, the expressions of AMY and SOD isozymes during seed germination process were analyzed. ~ Result] The main AMY bands remained strong during the whole peri- od and a new band A2 appeared in the middle and late period of seed germination. Some new SOD bands occurred at the early stage, then be- came weak or disappeared in the middle period, and band S6 became intense in the late peried. [ Conclusion.] The expression of AMY and SOD isozyme gene has temporal difference during germination of E. henryi Oliv seeds.展开更多
[Objective] The aims were to investigate the screening and identification of amylase-producing marine bacteria from Arctic sea and the optimization of the amylase producing conditions. [Method] A high-yield strain for...[Objective] The aims were to investigate the screening and identification of amylase-producing marine bacteria from Arctic sea and the optimization of the amylase producing conditions. [Method] A high-yield strain for producing amylase named ArcB84A was isolated from a total of 156 marine bacteria of Arctic sea. Then,the morphological identification of the strain,molecular identification of 16S rRNA and optimization of fermentation conditions were conducted. [Result] ArcB84A strain was a member of Pseudoalteromonas genus. The optimum conditions for enzyme production of B84A strain included that,the initial pH value of the medium was 7.0-8.0,and the best carbon and nitrogen sources respectively were 5‰ glucose and peptone. Surfactants including TritonX-100,Tween20 and Tween80 could increase amylase activity of the strain,in which,the effect of 10‰ Tween80 was the most obvious.展开更多
Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. α_Amylase is considered as one of the ke...Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. α_Amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was often shown extrachloroplastic in living cells. The present experiment showed that α_amylase activity was progressively increasing concomitantly with the decreasing starch concentrations during the development of apple ( Malus domestica Borkh cv. Starkrimson) fruit. The apparent amount of α_amylase assessed by Western blotting also increased during the fruit development, which is consistent with the seasonal changes in the enzyme activity. The enzyme subcellular_localization studies via immunogold electron_ microscopy technique showed that α_amylase visualized by gold particles was predominantly located in plastids, but the gold particles were scarcely found in other subcellular compartments. A high density of the enzyme was observed at the periphery of starch granules during the middle and late developmental stages. These data proved that the enzyme is compartmented in its functional sites in the living cells of the fruit. The predominantly plastid_distributed pattern of α_amylase in cells was shown unchanged throughout the fruit development. The density of gold particles (α_amylase) in plastids was increasing during the fruit development, which is consistent with the results of Western blotting. So it is considered that α_amylase is involved in starch hydrolysis in plastids of the fruit cells.展开更多
Objective] The aim of this study was to investigate the effects of exoge-nous amylases and Ca2+, Mn2+ and K+ on the amylase specific activities and starch degradation of the upper leaves of 'KRK26' planted in Yun...Objective] The aim of this study was to investigate the effects of exoge-nous amylases and Ca2+, Mn2+ and K+ on the amylase specific activities and starch degradation of the upper leaves of 'KRK26' planted in Yunnan Province during flue-curing. [Method] The amylase specific activities and starch degradation of the leaves were determined by using spectrophotometry. [Result] The 8 U/g exogenous α-amy-lase could improve the specific activity of the leaf α-amylase at yel owing and color-fixing stages, but could not at stem-drying stage, and similarly, the 80 U/g exoge-nous β-amylase could improved the specific activity of the leaf β-amylase at the yel owing stage and the early period of color-fixing stage. The leaf starch could be enhanced to degrade by the exogenous α- or β-amylases and the enhancing effect of the former was stronger than that of the later. 1.50 mg/ml Ca2+ improved the specific activity of the leaf (α+β)-amylase mainly due to its enhancing effect on the leaf α-amylase, and increased the starch degradation. 4 mmol/L Mn2+ inhibited the leaf α-amylase from yel owing to the early period of color-fixing and the β- and (α+β)-amylases from the yel owing to the later period of color-fixing, but enhanced the leafα-amylase from the later period of color-fixing to the later period of stem-drying and the β- and (α+β)-amylases at the later period of stem-drying. Meanwhile, Mn2+ ham-pered the starch degradation during yel owing, but promoted it from the early period of color-fixing to stem-drying. 1 mg/ml K+ enhanced the leaf α-, β- and (α+β)-amy-lases during the yel owing stage, but lowered them from the early period of color-fix-ing to the later period of stem-drying, and always inhibited the leaf starch degrada-tion. [Conclusion] The exogenous α-, β- amylases and Ca2+ of suitable concentra-tions could be used to treat the tobacco leaves before flue-curing to improve the leaf starch degradation during the curing.展开更多
A seed is the carrier of life,and research on the heat and mass transfer of a seed has already stridden toward the level of microcosm,such as cell protoplasm,cell organism,and molecular membrane.By means of a transmis...A seed is the carrier of life,and research on the heat and mass transfer of a seed has already stridden toward the level of microcosm,such as cell protoplasm,cell organism,and molecular membrane.By means of a transmission electron microscope,the authors of this paper observed the microstructure of cotyledon tissue slices of the Chinese cabbage seed with a moisture content of 13% (on dry basis) and that with a moisture content of 4.3% (on dry basis) for drying 2 h at 45 ℃.The compared result was that only wrinkles had been discovered on the cell walls of the seed dried for 2 h,without any significant change for other organelles.Study on the enzyme activity shows that after a germination for 48 h,the relative activity of α amylase of the Chinese cabbage seed dried for 2 h at 45 ℃,decreased by 5.8%,whereas that of the seed dried 2 h at a temperature of 67 ℃ decreased by 30.1%.This work shows that the drying factors have greatly influence on the seed microstructure,enzyme activity,which is directly positive to seed viability.Combined with the analysis of the critical safe drying temperature of the vegetable seed,it can be concluded that enzyme activity is also the function of the drying temperature,the moisture content and the drying time.展开更多
[Objective] The aim was to study the effect of mercury stress on seed germination and seedlings growth.[Method]using Zhengzhou 9023 as the experimental material and cultured in water,to study the effect of the germina...[Objective] The aim was to study the effect of mercury stress on seed germination and seedlings growth.[Method]using Zhengzhou 9023 as the experimental material and cultured in water,to study the effect of the germinating rate,seedling height,root length,seedling's fresh weight,the activities of peroxidase(POD)and amylase in leaf,root and germinating embryo at different concentrations of Hg2+(0.025,0.050,0.100,0.200,0.300,0.400,0.500 mmol/L).[Result]Low concentrations of Hg2+(≤ 0.10 mmol/L)have little effect on seed germination,seedling height,root length and fresh weight;high concentrations of Hg2+( 0.10 mmol/L)have significantly inhibited seed germination and seedling growth.Low concentration of Hg2+(≥ 0.025 mmol/L)could increase POD activity and inhibit the amylase activity significantly,and the effects have increased with the increasing of Hg2+ concentrations.[Conclusion]Hg2+ stress could change the activities of POD and amylase in leaf,root and germinating embryo,influence the energy and substrate supply which was required for normal metabolism of lipid oxidation,and inhibit seedling growth ultimately.展开更多
Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuber and tuberous roots, and fleshy fruit development. Based on previously reported ...Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuber and tuberous roots, and fleshy fruit development. Based on previously reported in vitro assays, β amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was shown often extrachloroplastic in living cells. Recently we have shown for the first time that β_amylase is predominantly immuno_localized to plastids in living cells of developing apple fruit. But it remains to know whether this model of β_amylase compartmentation is more widespread in plant living cells. The present experiment, conducted in tuberous root of sweet potato ( Ipomea batatas Lam. cv. Xushu 18) and via immunogold electron_microscopy technique, showed that β amylase visualized by gold particles was predominantly localized in plastids especially at periphery of starch granules, but the gold particles were scarcely found in other subcellular compartments, indicating that the enzyme is subcellularly compartmented in the same zone as its starch substrates. The density of gold particles (β amylase) in plastids was increasing during growing season, but the predominantly plastid_distributed pattern of β amylase in cells was shown unchanged throughout the tuberous root development. These data prove that the enzyme is compartmented in its functional sites, and so provide evidence to support the possible widespread biological function of the enzyme in catalyzing starch breakdown in plant living cells or at least in living cells of plant storage organs.展开更多
The changes in the activity of amylase and amylase-isoenzyme and the degradation of starch and pigment of tobacco leaf during flue-curing were studied by using the electric- heated flue-curing barn designed and made...The changes in the activity of amylase and amylase-isoenzyme and the degradation of starch and pigment of tobacco leaf during flue-curing were studied by using the electric- heated flue-curing barn designed and made by the Henan Agricultural University. The temperature and humidity of the barn were controlled automatically. The results indicated that starch in tobacco leaf decreased rapidly and leveled off after 48 h of curring, in the meantime, the content of soluble sugar increased accordingly and reached a peak at the stage of color-fixing. Both of them had a rapid-changing stage in the first 36 hours of yellowing. The changes of starch and soluble sugar contents had highly significant negative-correlation at 1 % level (rNC89 = -0.8962**, rYY85 = -0.9704**). The activity of amylase increased with the proceeding of curing and reached a peak after 36 hours of curing, then decreased. But the activity of amylase kept at a high level when the humidity of curing-environment was very low, even if the tobacco leaf had been dried. The rapid degradation of starch showed a significantly negative correlation with the increase of activity of amylase at 5 % level (rNC89 = -0.8495*, rYY85 = -0.7839*). The degradation of starch and pigment had the same regulation and had highly significant correlation at 1 % level (rNC89= 0.9649**, rYY85= 0.9428**). There were mainly three amylase-isoenzyme bands -A, B, C respectively, in tobacco leaf during flue curing. They were identified as α-AMY, β-AMY, R-AMY, and the activity of β-AMY was the highest. The changes in amylase activity and contents of starch and pigment were affected by the tobacco leaf moisture and environmental humidity during curing.展开更多
Two rice varieties, Xiushui 110 with high cadmium (Cd) tolerance and Xiushui 11 with low Cd tolerance were used to study the effects of Cd stress on seed germination, seedling growth and amylase activities. The low ca...Two rice varieties, Xiushui 110 with high cadmium (Cd) tolerance and Xiushui 11 with low Cd tolerance were used to study the effects of Cd stress on seed germination, seedling growth and amylase activities. The low cadmium concentration had little effect on seed germination rate. However, cadmium stress could significantly inhibit plumule and radicle growth, especially for radicle growth. Germination index, vigour index, radicle length and amylase activities of Xiushui 11 decreased more significantly with the increasing cadmium level compared with Xiushui 110. The cadmium content in seedlings of Xiushui 11 was higher than that in Xiushui 110 when the cadmium concentration exceeded 5 μmol/L, which caused lower mitotic index in root tips and amylase activities, and more serious cadmium toxicity in Xiushui 11.展开更多
Postprandial hyperglycemia is an early indication of type 2 diabetes and the target of many anti-diabetic and anti-obesity studies.α-Glucosidase and α-amylase are the crucial factors in regulating starch digestion a...Postprandial hyperglycemia is an early indication of type 2 diabetes and the target of many anti-diabetic and anti-obesity studies.α-Glucosidase and α-amylase are the crucial factors in regulating starch digestion and glucose absorption,making them key targets for many studies to treat postprandial hyperglycemia.We studied the inhibitory activities of microalgal fucoxanthin against rat-intestinalα-glucosidase and pancreaticα-amylase along with the antidiabetic eff ect to induce diff erentiation in 3T3-L1 pre-adipocytes using Oil Red-O staining.Fucoxanthin displayed strong hindrance activities towardα-amylase in a concentration-dependent manner,with an IC50 value of 0.68mmol/L,whereas weak inhibitory activity against α-glucosidase,with an IC 50 value of 4.75 mmol/L.Fucoxanthin also considerably elevated glucose oxidase activity in 3T3-L1 cells by 31.3%at 5μmol/L.During adipocyte differentiation,fucoxanthin showed lipid accumulation in 3T3-L1 cells with no cytotoxicity up to 20μmol/L.However,fucoxanthin had no inhibitory activity on glucose-6-phosphate dehydrogenase.These results suggest that fucoxanthin might be useful for the prevention of obesity or diabetes by inhibiting carbohydrate-hydrolyzing enzymes and lipid accumulation and be utilized as an ingredient for a functional food or dietary supplement.展开更多
BACKGROUND: Measurement of total serum amylase (AMY) is the most widely used biochemical test for the diagnosis of acute pancreatitis, but it is commonly considered a nonspecific marker. To improve the biochemical dia...BACKGROUND: Measurement of total serum amylase (AMY) is the most widely used biochemical test for the diagnosis of acute pancreatitis, but it is commonly considered a nonspecific marker. To improve the biochemical diagnosis of acute pancreatitis, lipase ( LIP ) and pancreatic amylase (PAMY) have been tested in recent years. The present study was designed to evaluate whether serum LIP and pancreatic PAMY tests could replace total amylase test to improve diagnostic efficiency in the evaluation of acute pancreatitis in patients with hyperamylasemia. METHODS: LIP and PAMY values were determined in serum samples from 92 patients with hyperamylasemia. Reference values for each enzyme were derived from serum samples of 147 healthy subjects. The activities of LIP and PAMY in patients with various diseases were shown directly by the boxplot graph. The diagnostic accuracy of LIP and PAMY was defined as the area under the receiver operating characteristic (ROC) curve. Their sensitivity and specificity in detecting acute pancreatitis at varying cutoff points were shown by the curve, and the best cutoff value for each enzyme was shown by the modified ROC curve. The diagnostic values of LIP, PAMY and LIP + AMY with each upper limit of reference range (ULR) were compared with the corresponding best cutoff values. RESULTS: The references values of LIP and PAMY were 12.2-47.6 U/L and 28-95 U/L, respectively. These values in patients with acute pancreatitis were higher than those patients with other diseases. The areas under the ROC curve ( AUC) of LIP and PAMY were 0. 799 and 0. 792, respectively, With the best diagnostic cutoff point of maximum (sensitivity + specificity) -100%, we obtained values of 97.9 U/L(LIP97.9 =2. 06 × ULR) for LIP and 209 U/L (PAMY209 =2.20 ×ULR) for PAMY. The best cutoff values for LIP, PAMY and LIP +AMY demonstrated the specificity, positive predictive value, and diagnostic efficiency higher than the corresponding ULRs. CONCLUSIONS: Serum LIP and PAMY are specific for the pancreas and might replace total amylase for the diagnosis of acute pancreatitis in hyperamylasemia patients. LIP97.9 is more efficient than PAMY209 in the diagnosis of acute pancreatitis. A combined test of both enzymes is not superior to single test of either enzyme in diagnostic accuracy.展开更多
The marine yeast strain N13d, producing an extracellular amylase, was isolated from the deep sea sediments of the Pa-cific Ocean. This strain was identified to be Aureobasidium pullulans by 18S rRNA gene sequence anal...The marine yeast strain N13d, producing an extracellular amylase, was isolated from the deep sea sediments of the Pa-cific Ocean. This strain was identified to be Aureobasidium pullulans by 18S rRNA gene sequence analysis and routine yeast identi-fication methods. The optimal sea water medium for amylase production by this yeast strain was 1.0% peptone and 1.0% soluble starch with pH 4.0. The optimal conditions for amylase production by this yeast strain were with temperature 28 ℃, aeration rate 6 Lmin-1 and agitation speed 250 rmin-1. Under these conditions, 58.5 units of amylase activity per mg protein were produced within 56 h of fermentation.展开更多
For the last decade, low serum amylase(hypoamylasemia) has been reported in certain common cardiometabolic conditions such as obesity, diabetes(regardless of type), and metabolic syndrome, all of which appear to have ...For the last decade, low serum amylase(hypoamylasemia) has been reported in certain common cardiometabolic conditions such as obesity, diabetes(regardless of type), and metabolic syndrome, all of which appear to have a common etiology of insufficient insulin action due to insulin resistance and/or diminished insulin secretion. Some clinical studies have shown that salivary amylase may be preferentially decreased in obese individuals, whereas others have revealed that pancreatic amylase may be preferentially decreased in diabetic subjects with insulin dependence. Despite this accumulated evidence, the clinical relevance of serum, salivary, and pancreatic amylase and the underlying mechanisms have not been fully elucidated. In recent years, copy number variations(CNVs) in the salivary amylase gene(AMY1), which range more broadly than the pancreatic amylase gene(AMY2A and AMY2B), have been shown to be well correlated with salivary and serum amylase levels. In addition, low CNV of AMY1, indicating low salivary amylase, was associated with insulin resistance, obesity, low taste perception/satiety, and postprandial hyperglycemia through impaired insulin secretion at early cephalic phase. In most populations, insulin-dependent diabetes is less prevalent(minor contribution) compared with insulin-independent diabetes, and obesity is highly prevalent compared with low body weight. Therefore, obesity as a condition that elicits cardiometabolic diseases relating to insulin resistance(major contribution) may be a common determinant for low serum amylase in a general population. In this review, the novel interpretation of low serum, salivary, and pancreas amylase is discussed in terms of major contributions of obesity, diabetes, and metabolic syndrome.展开更多
A novel mesophilic bacterial amylase, named oligosaccharide-producing multifunctional amylase(OPMA), was discovered and characterized. OPMA is an extracellular enzyme secreted by ZW253 1-1, a strain newly isolated f...A novel mesophilic bacterial amylase, named oligosaccharide-producing multifunctional amylase(OPMA), was discovered and characterized. OPMA is an extracellular enzyme secreted by ZW253 1-1, a strain newly isolated from Chinese soil. It could be purified to homogeneity from the culture supernatant of ZW2531-1 by 30%-60% saturated ammonium sulfate precipitation, followed by twice Sephadex gel filtration chromatography. OPMA is a 66 kDa protein based on SDS-PAGE and has an isoelectric point(p/) at pH=5.3 by Isoelectric focusing electrophoresis(WE). It only catalyzes the degradation of starch, rather than other alpha-l,4- and/or 1,6-glucan polysaccbarides such as fl-cyclomaltodextrin and pullulan. OPMA degraded starch to produce several oligosccharides including maltose, maltotriose, and isomaltotriose as the major end-products, and perhaps other oligosaccharides such as isomalto- tetraose, rather than glucose. OPMA exhibited optimal catalytic activity at a reaction temperature of 50 ℃ and pH=6.0, as determined by orthogonal test. Under the optimal reaction conditions, purified OPMA bad a specific activity of 13.75 U/rag. These findings suggest that OPMA could be used for the production of some oligosaccharides beneficial to the food industry and medicine.展开更多
A 54-year old man with a family history of hyperlipidemia was admitted with a 12 h history of severe generalized abdominal pain associated with nausea, vomiting and abdominal distension. Examination of the abdomen rev...A 54-year old man with a family history of hyperlipidemia was admitted with a 12 h history of severe generalized abdominal pain associated with nausea, vomiting and abdominal distension. Examination of the abdomen revealed tenderness in the periumblical area with shifting dullness. Serum pancreatic amylase was 29 IU/L and lipase 44 IU/L, triglyceride 36.28 mmol/L. Ultrasound showed ascites. CT of the abdomen with contrast showed inflammatory changes surrounding the pancreas consistent with acute pancreatitis. Ultrasound (US) guided abdomen paracentesis yielded a milky fluid with high triglyceride content consistent with chylous ascites. The patient was kept fasting and intravenous fluid hydration was provided. Meperidine was administered for pain relief. On the following days the patient’s condition improved and he was gradually restarted on a low-fat diet, and fat lowering agent (gemfibrozil) was begun, 600 mg twice a day. On d 14, abdomen US was repeated and showed fluid free peritoneal cavity. The patient was discharged after 18 d of hospitalization with 600 mg gemfibrozil twice a day. At the time of discharge, the fasting triglyceride was 4.2 mmol/L. After four weeks the patient was seen in the clinic, he was well.展开更多
Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.M...Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.Methods: Two hunderd and eighty-eight 5-day-old female chickens were randomly divided into six treatments: a newly harvested corn-soybean meal diet(control); control supplemented with 1,500 U/g α-amylase(Enzyme A);Enzyme A + 300 U/g amylopectase + 20,000 U/g glucoamylase(Enzyme B); Enzyme B + protease 10,000 U/g(Enzyme C); Enzyme C + xylanase 15,000 U/g(Enzyme D); and Enzyme D + cellulase 200 U/g + pectinase 1,000 U/g(Enzyme E). Growth performance, starch digestibility, digestive organ morphology, and intestinal microbiota were evaluated in the birds at 16 and 23 d of age.Results: Compared with the control diet, supplementation with Enzyme A significantly decreased ileum lesion scoring at 16 d of age(P < 0.05); supplementation with Enzyme B or Enzyme C showed positive effects on ileal amylopectin and total starch digestibility(P < 0.05); Broilers fed with a diet supplemented with Enzyme D had a tendency to decrease body weight gain at 23 d. Enzyme E supplementation improved lesion scoring of jejunum and ileum at 16 d(P < 0.05), and increased ileal amylopectin or total starch digestibility at 23 d(P < 0.05).Supplementation of enzymes changed cecal microbiota diversity. High numbers of Campylobacter, Helicobacter and Butyricicoccus, Anaerostipes and Bifidobacterium, Sutterella and Odoribacter were the main genera detected in supplementations with Enzymes B, C, D, and E respectively.Conclusions: Supplementation with amylase combined with glucoamylase or protease showed a beneficial effect on starch digestibility and intestinal microbiota diversity, and increased growth of broilers fed with newly harvested corn.展开更多
AIM To estimate the efficacy of 2 h post-endoscopic retrograde cholangiopancreatography(ERCP) serum amylase levels and other factors for predicting postERCP pancreatitis.METHODS This was a retrospective,single-center ...AIM To estimate the efficacy of 2 h post-endoscopic retrograde cholangiopancreatography(ERCP) serum amylase levels and other factors for predicting postERCP pancreatitis.METHODS This was a retrospective,single-center cohort study of consecutive patients who underwent ERCP from January 2010 to December 2013.Serum amylase levels were measured 2 h post-procedure,and patient- and procedure-related pancreatitis(PEP) risk factors wereanalyzed using a logistic model.RESULTS A total of 1520 cases(average age 72 ± 12 years,60% male) were initially enrolled in this study,and 1403 cases(725 patients) were ultimately analyzed after the exclusion of 117 cases.Fifty-five of these cases developed PEP.We established a 2 h serum amylase cutoff level of two times the upper limit of normal for predicting PEP.Multivariate analysis revealed that a cannulation time of more than 13 min [odds ratio(OR) 2.28,95%CI:1.132-4.651,P=0.0210] and 2 h amylase levels greater than the cutoff level(OR=24.1,95%CI:11.56-57.13,P<0.0001) were significant predictive factors for PEP.Forty-seven of the 55 patients who developed PEP exhibited 2 h amylase levels greater than the cutoff level(85%),and six of the remaining eight patients who developed PEP(75%) required longer cannulation times.Only 2 of the 1403 patients(0.14%) who developed PEP did not exhibit concerning 2 h amylase levels or require longer cannulation times.CONCLUSION These findings indicate that the combination of 2 h post-ERCP serum amylase levels and cannulation times represents a valuable marker for identifying patients at high risk for PEP.展开更多
文摘BACKGROUND The possible existence of an acini–islet–acinar(AIA)reflex,involving mutual amylase and insulin interactions,was investigated in the current acute experiment on pigs.AIM To confirm the existence of an AIA reflex and justify the placement of the exocrine and endocrine pancreatic components within the same organ.METHODS The study was performed on six pigs under general anesthesia.An intravenous glucose tolerance test was performed,with a bolus infusion of 50%glucose to the jugular vein,while amylase(5000 U/kg)or vehicle intrapancreatic infusions were administered via the pancreaticoduodenalis cranialis artery during 30 min with a 1 mL/min flow rate.RESULTS The amylase infusion to pancreatic arterial circulation inhibited and delayed the insulin release peak which is usually associated with the highest value of blood glucose and is typically observed at 15 min after glucose infusion,for>1 h.The intrapancreatic infusion of the vehicle(saline)did not have any effect on the time frame of insulin release.Infusion of 1%bovine serum albumin changed the insulin release curve dramatically and prolonged the high range of insulin secretion,far beyond the glucose peak.CONCLUSION Intrapancreatic arterial infusion of amylase interrupted the integrated glucose–insulin interactions.This confirms an AIA reflex and justifies placement of the exocrine and endocrine pancreatic components within the same organ.
文摘The filamentous fungi from the Huanghai sea sludge were screened according to their ability to produce cold-active α-amylase. The strain with the highest amylase activity was identified as Penicillium species. The α-amylase purified by ammonium sulphate precipitation and column chromatography on DEAE-sepharose and sephadex G-100 shows a molecular weight of about 55000 and a pI of 4.38. The enzyme is stable in a pH range of 5.5—8.0 and has a maximum activity at pH 6.0. Compared with the α-amylase from mesophiles and thermophiles, the cold-active enzyme shows a high enzyme activity at lower temperatures and a high sensitivity at temperatures higher than 50 ℃. The optimal temperature is 40 ℃ and the activity decreases dramatically at temperatures above 50 ℃. Ca 2+ shows a significant effect on maintaining the structure and the activity of the enzyme. EDTA and Cu 2+ are its inhibitors. The products from the hydrolysis of soluble starch with the cold-active enzyme are maltose and other oligosaccharides.
文摘[ Objective] The study was to understand the changes of amylase(AMY) and superoxide dismutase(SOD) isozymes during the ger- mination process of Emmenopterys henryi Oliv seeds. [ Metbod] By employing polyacrylamide gel electrophoresis method, the expressions of AMY and SOD isozymes during seed germination process were analyzed. ~ Result] The main AMY bands remained strong during the whole peri- od and a new band A2 appeared in the middle and late period of seed germination. Some new SOD bands occurred at the early stage, then be- came weak or disappeared in the middle period, and band S6 became intense in the late peried. [ Conclusion.] The expression of AMY and SOD isozyme gene has temporal difference during germination of E. henryi Oliv seeds.
基金Supported by International S&T Cooperation Program of China (No.2007DFA21300)Open Research Fund Program of the Ningbo Key Laboratory (No.2007A22007)+1 种基金Zhejiang Xinmiao Excellent Talents Program (No.2008R40G2210031)Education of Zhejiang Province Program (No.20060190)~~
文摘[Objective] The aims were to investigate the screening and identification of amylase-producing marine bacteria from Arctic sea and the optimization of the amylase producing conditions. [Method] A high-yield strain for producing amylase named ArcB84A was isolated from a total of 156 marine bacteria of Arctic sea. Then,the morphological identification of the strain,molecular identification of 16S rRNA and optimization of fermentation conditions were conducted. [Result] ArcB84A strain was a member of Pseudoalteromonas genus. The optimum conditions for enzyme production of B84A strain included that,the initial pH value of the medium was 7.0-8.0,and the best carbon and nitrogen sources respectively were 5‰ glucose and peptone. Surfactants including TritonX-100,Tween20 and Tween80 could increase amylase activity of the strain,in which,the effect of 10‰ Tween80 was the most obvious.
文摘Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. α_Amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was often shown extrachloroplastic in living cells. The present experiment showed that α_amylase activity was progressively increasing concomitantly with the decreasing starch concentrations during the development of apple ( Malus domestica Borkh cv. Starkrimson) fruit. The apparent amount of α_amylase assessed by Western blotting also increased during the fruit development, which is consistent with the seasonal changes in the enzyme activity. The enzyme subcellular_localization studies via immunogold electron_ microscopy technique showed that α_amylase visualized by gold particles was predominantly located in plastids, but the gold particles were scarcely found in other subcellular compartments. A high density of the enzyme was observed at the periphery of starch granules during the middle and late developmental stages. These data proved that the enzyme is compartmented in its functional sites in the living cells of the fruit. The predominantly plastid_distributed pattern of α_amylase in cells was shown unchanged throughout the fruit development. The density of gold particles (α_amylase) in plastids was increasing during the fruit development, which is consistent with the results of Western blotting. So it is considered that α_amylase is involved in starch hydrolysis in plastids of the fruit cells.
基金Supported by Fund from Yunnan Academy of Tobacco Agricultural Sciences for Comparative Study of the Flue-cured Tobaccos of the New Tobacco-growing Areas in Yunnan Province and Those of Zimbabwe(09YN001)~~
文摘Objective] The aim of this study was to investigate the effects of exoge-nous amylases and Ca2+, Mn2+ and K+ on the amylase specific activities and starch degradation of the upper leaves of 'KRK26' planted in Yunnan Province during flue-curing. [Method] The amylase specific activities and starch degradation of the leaves were determined by using spectrophotometry. [Result] The 8 U/g exogenous α-amy-lase could improve the specific activity of the leaf α-amylase at yel owing and color-fixing stages, but could not at stem-drying stage, and similarly, the 80 U/g exoge-nous β-amylase could improved the specific activity of the leaf β-amylase at the yel owing stage and the early period of color-fixing stage. The leaf starch could be enhanced to degrade by the exogenous α- or β-amylases and the enhancing effect of the former was stronger than that of the later. 1.50 mg/ml Ca2+ improved the specific activity of the leaf (α+β)-amylase mainly due to its enhancing effect on the leaf α-amylase, and increased the starch degradation. 4 mmol/L Mn2+ inhibited the leaf α-amylase from yel owing to the early period of color-fixing and the β- and (α+β)-amylases from the yel owing to the later period of color-fixing, but enhanced the leafα-amylase from the later period of color-fixing to the later period of stem-drying and the β- and (α+β)-amylases at the later period of stem-drying. Meanwhile, Mn2+ ham-pered the starch degradation during yel owing, but promoted it from the early period of color-fixing to stem-drying. 1 mg/ml K+ enhanced the leaf α-, β- and (α+β)-amy-lases during the yel owing stage, but lowered them from the early period of color-fix-ing to the later period of stem-drying, and always inhibited the leaf starch degrada-tion. [Conclusion] The exogenous α-, β- amylases and Ca2+ of suitable concentra-tions could be used to treat the tobacco leaves before flue-curing to improve the leaf starch degradation during the curing.
基金the National Natural Science Foundation of China(No.597361 30 )
文摘A seed is the carrier of life,and research on the heat and mass transfer of a seed has already stridden toward the level of microcosm,such as cell protoplasm,cell organism,and molecular membrane.By means of a transmission electron microscope,the authors of this paper observed the microstructure of cotyledon tissue slices of the Chinese cabbage seed with a moisture content of 13% (on dry basis) and that with a moisture content of 4.3% (on dry basis) for drying 2 h at 45 ℃.The compared result was that only wrinkles had been discovered on the cell walls of the seed dried for 2 h,without any significant change for other organelles.Study on the enzyme activity shows that after a germination for 48 h,the relative activity of α amylase of the Chinese cabbage seed dried for 2 h at 45 ℃,decreased by 5.8%,whereas that of the seed dried 2 h at a temperature of 67 ℃ decreased by 30.1%.This work shows that the drying factors have greatly influence on the seed microstructure,enzyme activity,which is directly positive to seed viability.Combined with the analysis of the critical safe drying temperature of the vegetable seed,it can be concluded that enzyme activity is also the function of the drying temperature,the moisture content and the drying time.
文摘[Objective] The aim was to study the effect of mercury stress on seed germination and seedlings growth.[Method]using Zhengzhou 9023 as the experimental material and cultured in water,to study the effect of the germinating rate,seedling height,root length,seedling's fresh weight,the activities of peroxidase(POD)and amylase in leaf,root and germinating embryo at different concentrations of Hg2+(0.025,0.050,0.100,0.200,0.300,0.400,0.500 mmol/L).[Result]Low concentrations of Hg2+(≤ 0.10 mmol/L)have little effect on seed germination,seedling height,root length and fresh weight;high concentrations of Hg2+( 0.10 mmol/L)have significantly inhibited seed germination and seedling growth.Low concentration of Hg2+(≥ 0.025 mmol/L)could increase POD activity and inhibit the amylase activity significantly,and the effects have increased with the increasing of Hg2+ concentrations.[Conclusion]Hg2+ stress could change the activities of POD and amylase in leaf,root and germinating embryo,influence the energy and substrate supply which was required for normal metabolism of lipid oxidation,and inhibit seedling growth ultimately.
文摘Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuber and tuberous roots, and fleshy fruit development. Based on previously reported in vitro assays, β amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was shown often extrachloroplastic in living cells. Recently we have shown for the first time that β_amylase is predominantly immuno_localized to plastids in living cells of developing apple fruit. But it remains to know whether this model of β_amylase compartmentation is more widespread in plant living cells. The present experiment, conducted in tuberous root of sweet potato ( Ipomea batatas Lam. cv. Xushu 18) and via immunogold electron_microscopy technique, showed that β amylase visualized by gold particles was predominantly localized in plastids especially at periphery of starch granules, but the gold particles were scarcely found in other subcellular compartments, indicating that the enzyme is subcellularly compartmented in the same zone as its starch substrates. The density of gold particles (β amylase) in plastids was increasing during growing season, but the predominantly plastid_distributed pattern of β amylase in cells was shown unchanged throughout the tuberous root development. These data prove that the enzyme is compartmented in its functional sites, and so provide evidence to support the possible widespread biological function of the enzyme in catalyzing starch breakdown in plant living cells or at least in living cells of plant storage organs.
文摘The changes in the activity of amylase and amylase-isoenzyme and the degradation of starch and pigment of tobacco leaf during flue-curing were studied by using the electric- heated flue-curing barn designed and made by the Henan Agricultural University. The temperature and humidity of the barn were controlled automatically. The results indicated that starch in tobacco leaf decreased rapidly and leveled off after 48 h of curring, in the meantime, the content of soluble sugar increased accordingly and reached a peak at the stage of color-fixing. Both of them had a rapid-changing stage in the first 36 hours of yellowing. The changes of starch and soluble sugar contents had highly significant negative-correlation at 1 % level (rNC89 = -0.8962**, rYY85 = -0.9704**). The activity of amylase increased with the proceeding of curing and reached a peak after 36 hours of curing, then decreased. But the activity of amylase kept at a high level when the humidity of curing-environment was very low, even if the tobacco leaf had been dried. The rapid degradation of starch showed a significantly negative correlation with the increase of activity of amylase at 5 % level (rNC89 = -0.8495*, rYY85 = -0.7839*). The degradation of starch and pigment had the same regulation and had highly significant correlation at 1 % level (rNC89= 0.9649**, rYY85= 0.9428**). There were mainly three amylase-isoenzyme bands -A, B, C respectively, in tobacco leaf during flue curing. They were identified as α-AMY, β-AMY, R-AMY, and the activity of β-AMY was the highest. The changes in amylase activity and contents of starch and pigment were affected by the tobacco leaf moisture and environmental humidity during curing.
基金supported by the Project of National Key Basic Research and Development, China (Grant No. 2002CB410804)the Natural Science Foundation of Guizhou Province, China (Grant No. 20072058)the Foundation for Young Scholars Scientists of Guizhou University (Grant No. X060036), China.
文摘Two rice varieties, Xiushui 110 with high cadmium (Cd) tolerance and Xiushui 11 with low Cd tolerance were used to study the effects of Cd stress on seed germination, seedling growth and amylase activities. The low cadmium concentration had little effect on seed germination rate. However, cadmium stress could significantly inhibit plumule and radicle growth, especially for radicle growth. Germination index, vigour index, radicle length and amylase activities of Xiushui 11 decreased more significantly with the increasing cadmium level compared with Xiushui 110. The cadmium content in seedlings of Xiushui 11 was higher than that in Xiushui 110 when the cadmium concentration exceeded 5 μmol/L, which caused lower mitotic index in root tips and amylase activities, and more serious cadmium toxicity in Xiushui 11.
基金a part of the project titled ’Future Marine Technology Development’ funded by the Ministry of Oceans and Fisheries, Republic of Korea
文摘Postprandial hyperglycemia is an early indication of type 2 diabetes and the target of many anti-diabetic and anti-obesity studies.α-Glucosidase and α-amylase are the crucial factors in regulating starch digestion and glucose absorption,making them key targets for many studies to treat postprandial hyperglycemia.We studied the inhibitory activities of microalgal fucoxanthin against rat-intestinalα-glucosidase and pancreaticα-amylase along with the antidiabetic eff ect to induce diff erentiation in 3T3-L1 pre-adipocytes using Oil Red-O staining.Fucoxanthin displayed strong hindrance activities towardα-amylase in a concentration-dependent manner,with an IC50 value of 0.68mmol/L,whereas weak inhibitory activity against α-glucosidase,with an IC 50 value of 4.75 mmol/L.Fucoxanthin also considerably elevated glucose oxidase activity in 3T3-L1 cells by 31.3%at 5μmol/L.During adipocyte differentiation,fucoxanthin showed lipid accumulation in 3T3-L1 cells with no cytotoxicity up to 20μmol/L.However,fucoxanthin had no inhibitory activity on glucose-6-phosphate dehydrogenase.These results suggest that fucoxanthin might be useful for the prevention of obesity or diabetes by inhibiting carbohydrate-hydrolyzing enzymes and lipid accumulation and be utilized as an ingredient for a functional food or dietary supplement.
文摘BACKGROUND: Measurement of total serum amylase (AMY) is the most widely used biochemical test for the diagnosis of acute pancreatitis, but it is commonly considered a nonspecific marker. To improve the biochemical diagnosis of acute pancreatitis, lipase ( LIP ) and pancreatic amylase (PAMY) have been tested in recent years. The present study was designed to evaluate whether serum LIP and pancreatic PAMY tests could replace total amylase test to improve diagnostic efficiency in the evaluation of acute pancreatitis in patients with hyperamylasemia. METHODS: LIP and PAMY values were determined in serum samples from 92 patients with hyperamylasemia. Reference values for each enzyme were derived from serum samples of 147 healthy subjects. The activities of LIP and PAMY in patients with various diseases were shown directly by the boxplot graph. The diagnostic accuracy of LIP and PAMY was defined as the area under the receiver operating characteristic (ROC) curve. Their sensitivity and specificity in detecting acute pancreatitis at varying cutoff points were shown by the curve, and the best cutoff value for each enzyme was shown by the modified ROC curve. The diagnostic values of LIP, PAMY and LIP + AMY with each upper limit of reference range (ULR) were compared with the corresponding best cutoff values. RESULTS: The references values of LIP and PAMY were 12.2-47.6 U/L and 28-95 U/L, respectively. These values in patients with acute pancreatitis were higher than those patients with other diseases. The areas under the ROC curve ( AUC) of LIP and PAMY were 0. 799 and 0. 792, respectively, With the best diagnostic cutoff point of maximum (sensitivity + specificity) -100%, we obtained values of 97.9 U/L(LIP97.9 =2. 06 × ULR) for LIP and 209 U/L (PAMY209 =2.20 ×ULR) for PAMY. The best cutoff values for LIP, PAMY and LIP +AMY demonstrated the specificity, positive predictive value, and diagnostic efficiency higher than the corresponding ULRs. CONCLUSIONS: Serum LIP and PAMY are specific for the pancreas and might replace total amylase for the diagnosis of acute pancreatitis in hyperamylasemia patients. LIP97.9 is more efficient than PAMY209 in the diagnosis of acute pancreatitis. A combined test of both enzymes is not superior to single test of either enzyme in diagnostic accuracy.
文摘The marine yeast strain N13d, producing an extracellular amylase, was isolated from the deep sea sediments of the Pa-cific Ocean. This strain was identified to be Aureobasidium pullulans by 18S rRNA gene sequence analysis and routine yeast identi-fication methods. The optimal sea water medium for amylase production by this yeast strain was 1.0% peptone and 1.0% soluble starch with pH 4.0. The optimal conditions for amylase production by this yeast strain were with temperature 28 ℃, aeration rate 6 Lmin-1 and agitation speed 250 rmin-1. Under these conditions, 58.5 units of amylase activity per mg protein were produced within 56 h of fermentation.
文摘For the last decade, low serum amylase(hypoamylasemia) has been reported in certain common cardiometabolic conditions such as obesity, diabetes(regardless of type), and metabolic syndrome, all of which appear to have a common etiology of insufficient insulin action due to insulin resistance and/or diminished insulin secretion. Some clinical studies have shown that salivary amylase may be preferentially decreased in obese individuals, whereas others have revealed that pancreatic amylase may be preferentially decreased in diabetic subjects with insulin dependence. Despite this accumulated evidence, the clinical relevance of serum, salivary, and pancreatic amylase and the underlying mechanisms have not been fully elucidated. In recent years, copy number variations(CNVs) in the salivary amylase gene(AMY1), which range more broadly than the pancreatic amylase gene(AMY2A and AMY2B), have been shown to be well correlated with salivary and serum amylase levels. In addition, low CNV of AMY1, indicating low salivary amylase, was associated with insulin resistance, obesity, low taste perception/satiety, and postprandial hyperglycemia through impaired insulin secretion at early cephalic phase. In most populations, insulin-dependent diabetes is less prevalent(minor contribution) compared with insulin-independent diabetes, and obesity is highly prevalent compared with low body weight. Therefore, obesity as a condition that elicits cardiometabolic diseases relating to insulin resistance(major contribution) may be a common determinant for low serum amylase in a general population. In this review, the novel interpretation of low serum, salivary, and pancreas amylase is discussed in terms of major contributions of obesity, diabetes, and metabolic syndrome.
基金Supported by the National High Technology Research and Development Program of China(No.2007AA100601-2)the National Natural Science Foundation of China(No.30870518).
文摘A novel mesophilic bacterial amylase, named oligosaccharide-producing multifunctional amylase(OPMA), was discovered and characterized. OPMA is an extracellular enzyme secreted by ZW253 1-1, a strain newly isolated from Chinese soil. It could be purified to homogeneity from the culture supernatant of ZW2531-1 by 30%-60% saturated ammonium sulfate precipitation, followed by twice Sephadex gel filtration chromatography. OPMA is a 66 kDa protein based on SDS-PAGE and has an isoelectric point(p/) at pH=5.3 by Isoelectric focusing electrophoresis(WE). It only catalyzes the degradation of starch, rather than other alpha-l,4- and/or 1,6-glucan polysaccbarides such as fl-cyclomaltodextrin and pullulan. OPMA degraded starch to produce several oligosccharides including maltose, maltotriose, and isomaltotriose as the major end-products, and perhaps other oligosaccharides such as isomalto- tetraose, rather than glucose. OPMA exhibited optimal catalytic activity at a reaction temperature of 50 ℃ and pH=6.0, as determined by orthogonal test. Under the optimal reaction conditions, purified OPMA bad a specific activity of 13.75 U/rag. These findings suggest that OPMA could be used for the production of some oligosaccharides beneficial to the food industry and medicine.
文摘A 54-year old man with a family history of hyperlipidemia was admitted with a 12 h history of severe generalized abdominal pain associated with nausea, vomiting and abdominal distension. Examination of the abdomen revealed tenderness in the periumblical area with shifting dullness. Serum pancreatic amylase was 29 IU/L and lipase 44 IU/L, triglyceride 36.28 mmol/L. Ultrasound showed ascites. CT of the abdomen with contrast showed inflammatory changes surrounding the pancreas consistent with acute pancreatitis. Ultrasound (US) guided abdomen paracentesis yielded a milky fluid with high triglyceride content consistent with chylous ascites. The patient was kept fasting and intravenous fluid hydration was provided. Meperidine was administered for pain relief. On the following days the patient’s condition improved and he was gradually restarted on a low-fat diet, and fat lowering agent (gemfibrozil) was begun, 600 mg twice a day. On d 14, abdomen US was repeated and showed fluid free peritoneal cavity. The patient was discharged after 18 d of hospitalization with 600 mg gemfibrozil twice a day. At the time of discharge, the fasting triglyceride was 4.2 mmol/L. After four weeks the patient was seen in the clinic, he was well.
基金supported by the System for Poultry Production Technology,Beijing Innovation Research Team of Modern Agriculture(BAIC04–2016)
文摘Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.Methods: Two hunderd and eighty-eight 5-day-old female chickens were randomly divided into six treatments: a newly harvested corn-soybean meal diet(control); control supplemented with 1,500 U/g α-amylase(Enzyme A);Enzyme A + 300 U/g amylopectase + 20,000 U/g glucoamylase(Enzyme B); Enzyme B + protease 10,000 U/g(Enzyme C); Enzyme C + xylanase 15,000 U/g(Enzyme D); and Enzyme D + cellulase 200 U/g + pectinase 1,000 U/g(Enzyme E). Growth performance, starch digestibility, digestive organ morphology, and intestinal microbiota were evaluated in the birds at 16 and 23 d of age.Results: Compared with the control diet, supplementation with Enzyme A significantly decreased ileum lesion scoring at 16 d of age(P < 0.05); supplementation with Enzyme B or Enzyme C showed positive effects on ileal amylopectin and total starch digestibility(P < 0.05); Broilers fed with a diet supplemented with Enzyme D had a tendency to decrease body weight gain at 23 d. Enzyme E supplementation improved lesion scoring of jejunum and ileum at 16 d(P < 0.05), and increased ileal amylopectin or total starch digestibility at 23 d(P < 0.05).Supplementation of enzymes changed cecal microbiota diversity. High numbers of Campylobacter, Helicobacter and Butyricicoccus, Anaerostipes and Bifidobacterium, Sutterella and Odoribacter were the main genera detected in supplementations with Enzymes B, C, D, and E respectively.Conclusions: Supplementation with amylase combined with glucoamylase or protease showed a beneficial effect on starch digestibility and intestinal microbiota diversity, and increased growth of broilers fed with newly harvested corn.
文摘AIM To estimate the efficacy of 2 h post-endoscopic retrograde cholangiopancreatography(ERCP) serum amylase levels and other factors for predicting postERCP pancreatitis.METHODS This was a retrospective,single-center cohort study of consecutive patients who underwent ERCP from January 2010 to December 2013.Serum amylase levels were measured 2 h post-procedure,and patient- and procedure-related pancreatitis(PEP) risk factors wereanalyzed using a logistic model.RESULTS A total of 1520 cases(average age 72 ± 12 years,60% male) were initially enrolled in this study,and 1403 cases(725 patients) were ultimately analyzed after the exclusion of 117 cases.Fifty-five of these cases developed PEP.We established a 2 h serum amylase cutoff level of two times the upper limit of normal for predicting PEP.Multivariate analysis revealed that a cannulation time of more than 13 min [odds ratio(OR) 2.28,95%CI:1.132-4.651,P=0.0210] and 2 h amylase levels greater than the cutoff level(OR=24.1,95%CI:11.56-57.13,P<0.0001) were significant predictive factors for PEP.Forty-seven of the 55 patients who developed PEP exhibited 2 h amylase levels greater than the cutoff level(85%),and six of the remaining eight patients who developed PEP(75%) required longer cannulation times.Only 2 of the 1403 patients(0.14%) who developed PEP did not exhibit concerning 2 h amylase levels or require longer cannulation times.CONCLUSION These findings indicate that the combination of 2 h post-ERCP serum amylase levels and cannulation times represents a valuable marker for identifying patients at high risk for PEP.