Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly devel...Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling.展开更多
Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of col...Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.展开更多
The hollow flange beam(HFB) is a unique cold-formed steel section developed in Australia for use as a flexural member.It′s a particular cross section with two torsion rigid closed triangular flanges and a comparative...The hollow flange beam(HFB) is a unique cold-formed steel section developed in Australia for use as a flexural member.It′s a particular cross section with two torsion rigid closed triangular flanges and a comparatively flexible web,and it is a type of high efficient cross section.This paper presents two kinds of new cold-formed flange-closed welding sections named HF1 and HF2 according to different section component and parameters of HFB.Nonlinear finite element method has been adopted to investigate the mechanical properties such as buckling mode,deformation process,rigidity,ductility and correlation curve of two kinds of new section members which being subjected to axial compression,flexure,combined compression and bending.Systematical comparisons of the consumed steel quantities of per unit load carrying capacity between new section members and the same section dimensions of cold-formed C-section members have been carried out.Some conclusions can be drawn from above work that the new sections have some superior properties including higher load carrying capacity and section modulus,sufficient section stiffness,and difficult occurrence for the sub element local buckling.The new sections are suitable for bearing flexure,compression,combined compression and bending.The new sections′ consumed steel quantities of per unit load carrying capacity are almost half as those of the same dimension C-section members′.The experimental investigation is carried out further on the new cold-formed flange-closed welding section members and can be used in the practical engineering.展开更多
Application of weathering and cold-formed steel in transmission lines can reduce steel consumption and environmental pollution. Some advances in the studies on the weathering and cold-formed steel in transmission towe...Application of weathering and cold-formed steel in transmission lines can reduce steel consumption and environmental pollution. Some advances in the studies on the weathering and cold-formed steel in transmission tower are introduced. Firstly, corrosion-resistant tests of weathering steel samples under different simulating technical atmospheres were carried out separately for 240 hours. It shows that the corrosion degree of joint samples is higher than that of single chip samples, and the corrosion-resistant performance of weathering steel is superior to common carbon steel. The corrosion-resistance of weathering steel meets with the requirement of transmission tower. Secondly, experiments and finite element analysis for cold-formed angles and a 220kV prototype tower were completed, and the stability coeffi-cient fitting curves as well as the modification formulas of slenderness ratio for cold-formed members were determined. According to the structural characteristics of transmission towers, four sections of cold-formed angles with different sections and slenderness ratios were selected in this study. The finite element model well predicted the buckling behav-iour of the cold-formed members. Ultimate loads calculating by the fitting curve were well agreed to the experimental values, especially for the members with small slenderness ratios. Weight of the cold-formed steel tower can be reduced by more than 5 percent after considering the strength enhancement. Cost of the weathering and cold-formed steel transmission tower is nearly equivalent to that of hot-rolled steel tower with hot galvanizing.展开更多
In this study, the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at normal room temperature was investigated. The current standard pre...In this study, the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at normal room temperature was investigated. The current standard predictions are generally accurate for outer comer specimen but conservative for inner comer specimen. Based on the experimental results, an analytical model to predict the comer strength of high strength cold-formed steel at normal room temperature was also proposed. The comparison indicated that the proposed model predicted well the comer strength of high strength cold-formed steel not only at normal room temperature but also at elevated temperatures. It is shown that the predictions obtained from the proposed model agree well with the test results. Generally the comer strength enhancement of high strength cold-formed steel decreases when the temperature increases.展开更多
The constitutive relation of bond-slip on steel and concrete interface is proposed for short steel reinforced concrete (SRC) column. Based on the experimental research on bond-slip performance, a mechanical model of...The constitutive relation of bond-slip on steel and concrete interface is proposed for short steel reinforced concrete (SRC) column. Based on the experimental research on bond-slip performance, a mechanical model of short SRC column in pulling or pushing test is established. By means of the elasto-plasticity theory the explicit formulation of bond-slip constitutive relation τ-s in different anchor-hold place of push and pull member is investigated under the conditions of balance and boundary. The study shows that the constitutive relation is relevant to the embedment length and the thickness of concrete cover. The results are continuous descriptions of bond-slip constitutive relation and can be used to analyze the non-linear performance of SRC members. Results indicate that the principle of the method is correct and it performs well for short SRC column.展开更多
Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investig...Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investigates the non-destructive capability of ultrasonic shear-wave spectroscopy in absolute stress evaluation of steel members.The effect of steel-member stress on the shear-wave amplitude spectrum is investigated,and a method of absolute stress measurement is proposed.Specifically,the process for evaluating absolute stress using shear-wave spectroscopy is summarized.Two steel members are employed to investigate the relationship between the stress and the frequency in shear-wave echo amplitude spectrum.The H-beam loaded by the universal testing machine is evaluated by the proposed method and the traditional strain gauge method for verification.The results show that the proposed method is effective and accurate for determining absolute stress in steel members.展开更多
A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impu...A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.展开更多
文摘Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling.
基金funded by the‘Research Project of the Sucheng to Sihong Section of the Yanluo Expressway-Measurement Technology and Application of Bridge Quality Project Based on UAV Binocular Imaging(No.00-00-JSFW-20230203-029)’,received by H.Z.Wang.
文摘Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.
文摘The hollow flange beam(HFB) is a unique cold-formed steel section developed in Australia for use as a flexural member.It′s a particular cross section with two torsion rigid closed triangular flanges and a comparatively flexible web,and it is a type of high efficient cross section.This paper presents two kinds of new cold-formed flange-closed welding sections named HF1 and HF2 according to different section component and parameters of HFB.Nonlinear finite element method has been adopted to investigate the mechanical properties such as buckling mode,deformation process,rigidity,ductility and correlation curve of two kinds of new section members which being subjected to axial compression,flexure,combined compression and bending.Systematical comparisons of the consumed steel quantities of per unit load carrying capacity between new section members and the same section dimensions of cold-formed C-section members have been carried out.Some conclusions can be drawn from above work that the new sections have some superior properties including higher load carrying capacity and section modulus,sufficient section stiffness,and difficult occurrence for the sub element local buckling.The new sections are suitable for bearing flexure,compression,combined compression and bending.The new sections′ consumed steel quantities of per unit load carrying capacity are almost half as those of the same dimension C-section members′.The experimental investigation is carried out further on the new cold-formed flange-closed welding section members and can be used in the practical engineering.
文摘Application of weathering and cold-formed steel in transmission lines can reduce steel consumption and environmental pollution. Some advances in the studies on the weathering and cold-formed steel in transmission tower are introduced. Firstly, corrosion-resistant tests of weathering steel samples under different simulating technical atmospheres were carried out separately for 240 hours. It shows that the corrosion degree of joint samples is higher than that of single chip samples, and the corrosion-resistant performance of weathering steel is superior to common carbon steel. The corrosion-resistance of weathering steel meets with the requirement of transmission tower. Secondly, experiments and finite element analysis for cold-formed angles and a 220kV prototype tower were completed, and the stability coeffi-cient fitting curves as well as the modification formulas of slenderness ratio for cold-formed members were determined. According to the structural characteristics of transmission towers, four sections of cold-formed angles with different sections and slenderness ratios were selected in this study. The finite element model well predicted the buckling behav-iour of the cold-formed members. Ultimate loads calculating by the fitting curve were well agreed to the experimental values, especially for the members with small slenderness ratios. Weight of the cold-formed steel tower can be reduced by more than 5 percent after considering the strength enhancement. Cost of the weathering and cold-formed steel transmission tower is nearly equivalent to that of hot-rolled steel tower with hot galvanizing.
基金Project (No. 113000-X80703) supported by the Postdoctoral Fund of Zhejiang Province, China
文摘In this study, the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at normal room temperature was investigated. The current standard predictions are generally accurate for outer comer specimen but conservative for inner comer specimen. Based on the experimental results, an analytical model to predict the comer strength of high strength cold-formed steel at normal room temperature was also proposed. The comparison indicated that the proposed model predicted well the comer strength of high strength cold-formed steel not only at normal room temperature but also at elevated temperatures. It is shown that the predictions obtained from the proposed model agree well with the test results. Generally the comer strength enhancement of high strength cold-formed steel decreases when the temperature increases.
基金Sponsored by the Science and Technology Program Project of Henan Province(002462004)
文摘The constitutive relation of bond-slip on steel and concrete interface is proposed for short steel reinforced concrete (SRC) column. Based on the experimental research on bond-slip performance, a mechanical model of short SRC column in pulling or pushing test is established. By means of the elasto-plasticity theory the explicit formulation of bond-slip constitutive relation τ-s in different anchor-hold place of push and pull member is investigated under the conditions of balance and boundary. The study shows that the constitutive relation is relevant to the embedment length and the thickness of concrete cover. The results are continuous descriptions of bond-slip constitutive relation and can be used to analyze the non-linear performance of SRC members. Results indicate that the principle of the method is correct and it performs well for short SRC column.
基金supported by the National Key Research and Development Program of China (No. 2016YFC0701102)the National Nature Science Foundation of China(No.51538003)the Shenzhen Technology Innovation Program (No.JSGG20150330103937411)
文摘Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investigates the non-destructive capability of ultrasonic shear-wave spectroscopy in absolute stress evaluation of steel members.The effect of steel-member stress on the shear-wave amplitude spectrum is investigated,and a method of absolute stress measurement is proposed.Specifically,the process for evaluating absolute stress using shear-wave spectroscopy is summarized.Two steel members are employed to investigate the relationship between the stress and the frequency in shear-wave echo amplitude spectrum.The H-beam loaded by the universal testing machine is evaluated by the proposed method and the traditional strain gauge method for verification.The results show that the proposed method is effective and accurate for determining absolute stress in steel members.
基金The National Natural Science Foundation of China(No.51078229)the Specialized Research Fund for the Doctoral Program of Higher Education(o.20100073110008)
文摘A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.