Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of col...Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.展开更多
The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmen...The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmentally-friendly aspect, the vehicle structure must be light weight in order to improve the fuel efficiency and reduce the tail gas emission. Therefore, the light weight of vehicle must be achieved in a securing safety status of crash. An aluminum or carbon fiber reinforced plastics (CFRP) is representative one of the light-weight materials. Based on the respective collapse behavior of aluminum and CFRP member, the collapse behavior of hybrid thin-walled member was evaluated. The hybrid members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties, such as strength and elasticity, change with its stacking condition, the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member were tested. The collapse mode and energy absorption capability of the hybrid thin-walled member were analyzed with the change of the fiber orientation angle and interface number.展开更多
The hollow flange beam(HFB) is a unique cold-formed steel section developed in Australia for use as a flexural member.It′s a particular cross section with two torsion rigid closed triangular flanges and a comparative...The hollow flange beam(HFB) is a unique cold-formed steel section developed in Australia for use as a flexural member.It′s a particular cross section with two torsion rigid closed triangular flanges and a comparatively flexible web,and it is a type of high efficient cross section.This paper presents two kinds of new cold-formed flange-closed welding sections named HF1 and HF2 according to different section component and parameters of HFB.Nonlinear finite element method has been adopted to investigate the mechanical properties such as buckling mode,deformation process,rigidity,ductility and correlation curve of two kinds of new section members which being subjected to axial compression,flexure,combined compression and bending.Systematical comparisons of the consumed steel quantities of per unit load carrying capacity between new section members and the same section dimensions of cold-formed C-section members have been carried out.Some conclusions can be drawn from above work that the new sections have some superior properties including higher load carrying capacity and section modulus,sufficient section stiffness,and difficult occurrence for the sub element local buckling.The new sections are suitable for bearing flexure,compression,combined compression and bending.The new sections′ consumed steel quantities of per unit load carrying capacity are almost half as those of the same dimension C-section members′.The experimental investigation is carried out further on the new cold-formed flange-closed welding section members and can be used in the practical engineering.展开更多
A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impu...A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.展开更多
The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily con...The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily control the explicit buckling solutions, such as the computation time, loading function and dynamic relaxation, are investigated and suggested for the buckling analysis of thin-walled members. Three examples of different buckling modes, namely snap-through, overall and local buckling, are studied based on the implicit FEM, quasi-static explicit FEM and EFG method via the commercial software LS-DYNA. The convergence rate and accuracy of the explicit methods are compared with the conventional implicit arc-length method. It is drawn that EFG quasi-static explicit buckling analysis presents the same accurate results as implicit finite element solution, but is without convergence problem and of less-consumption of computing time than FEM.展开更多
The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steel...The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steelbamboo interface is the premise of composite effect.13 specimens were prepared to investigate the failure modes and mechanism of the steel-bamboo interface on the basis of push-out test,and the strain difference analysis method was proposed to study the distribution of shear stress.The results show that the main failure modes of steel-bamboo interface are adhesion failure and splitting of bamboo plywood.The shear stress is not evenly distributed along the longitudinal direction of the interface,showing a shape of“larger at two ends and smaller in the middle”.The lower end of the interface is the initial location of the interface failure and the shear stress concentration degree is positively correlated with the thickness of the externally bonded bamboo plate.The shear resistance of steel-bamboo interface can be enhanced by improving the adhesion between steel and structural adhesive and ameliorating the quality of bamboo products.展开更多
基金funded by the‘Research Project of the Sucheng to Sihong Section of the Yanluo Expressway-Measurement Technology and Application of Bridge Quality Project Based on UAV Binocular Imaging(No.00-00-JSFW-20230203-029)’,received by H.Z.Wang.
文摘Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.
文摘The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmentally-friendly aspect, the vehicle structure must be light weight in order to improve the fuel efficiency and reduce the tail gas emission. Therefore, the light weight of vehicle must be achieved in a securing safety status of crash. An aluminum or carbon fiber reinforced plastics (CFRP) is representative one of the light-weight materials. Based on the respective collapse behavior of aluminum and CFRP member, the collapse behavior of hybrid thin-walled member was evaluated. The hybrid members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties, such as strength and elasticity, change with its stacking condition, the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member were tested. The collapse mode and energy absorption capability of the hybrid thin-walled member were analyzed with the change of the fiber orientation angle and interface number.
文摘The hollow flange beam(HFB) is a unique cold-formed steel section developed in Australia for use as a flexural member.It′s a particular cross section with two torsion rigid closed triangular flanges and a comparatively flexible web,and it is a type of high efficient cross section.This paper presents two kinds of new cold-formed flange-closed welding sections named HF1 and HF2 according to different section component and parameters of HFB.Nonlinear finite element method has been adopted to investigate the mechanical properties such as buckling mode,deformation process,rigidity,ductility and correlation curve of two kinds of new section members which being subjected to axial compression,flexure,combined compression and bending.Systematical comparisons of the consumed steel quantities of per unit load carrying capacity between new section members and the same section dimensions of cold-formed C-section members have been carried out.Some conclusions can be drawn from above work that the new sections have some superior properties including higher load carrying capacity and section modulus,sufficient section stiffness,and difficult occurrence for the sub element local buckling.The new sections are suitable for bearing flexure,compression,combined compression and bending.The new sections′ consumed steel quantities of per unit load carrying capacity are almost half as those of the same dimension C-section members′.The experimental investigation is carried out further on the new cold-formed flange-closed welding section members and can be used in the practical engineering.
基金The National Natural Science Foundation of China(No.51078229)the Specialized Research Fund for the Doctoral Program of Higher Education(o.20100073110008)
文摘A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.
文摘The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily control the explicit buckling solutions, such as the computation time, loading function and dynamic relaxation, are investigated and suggested for the buckling analysis of thin-walled members. Three examples of different buckling modes, namely snap-through, overall and local buckling, are studied based on the implicit FEM, quasi-static explicit FEM and EFG method via the commercial software LS-DYNA. The convergence rate and accuracy of the explicit methods are compared with the conventional implicit arc-length method. It is drawn that EFG quasi-static explicit buckling analysis presents the same accurate results as implicit finite element solution, but is without convergence problem and of less-consumption of computing time than FEM.
基金supported by National Key R&D Program of China[grant number 2017YFC0703502]the National Natural Science Foundation of China(NSFC)[grant numbers 51978345,51678310 and 51708304]K.C.Wong Magna Fund at the Ningbo University.
文摘The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steelbamboo interface is the premise of composite effect.13 specimens were prepared to investigate the failure modes and mechanism of the steel-bamboo interface on the basis of push-out test,and the strain difference analysis method was proposed to study the distribution of shear stress.The results show that the main failure modes of steel-bamboo interface are adhesion failure and splitting of bamboo plywood.The shear stress is not evenly distributed along the longitudinal direction of the interface,showing a shape of“larger at two ends and smaller in the middle”.The lower end of the interface is the initial location of the interface failure and the shear stress concentration degree is positively correlated with the thickness of the externally bonded bamboo plate.The shear resistance of steel-bamboo interface can be enhanced by improving the adhesion between steel and structural adhesive and ameliorating the quality of bamboo products.