Fog has recently become a frequent high-impact weather phenomenon along the coastal regions of North China. Accurate fog forecasting remains challenging due to limited understanding of the predictability and mechanism...Fog has recently become a frequent high-impact weather phenomenon along the coastal regions of North China. Accurate fog forecasting remains challenging due to limited understanding of the predictability and mechanism of fog formation associated with synoptic-scale circulation. One frequent synoptic pattern of fog formation in this area is associated with cold front passage(cold-front synoptic pattern, CFSP). This paper explored the predictability of a typical CFSP fog event from the perspective of analyzing key characteristics of synoptic-scale circulation determining fog forecasting performance and the possible mechanism. The event was ensemble forecasted with the Weather Research and Forecasting model. Two groups of ensemble members with good and bad forecasting performance were selected and composited. Results showed that the predictability of this case was largely determined by the simulated strengths of the cold-front circulation(i.e., trough and ridge and the associated surface high). The bad-performing members tended to have a weaker ridge behind a stronger trough, and associated higher pressure over land and a weaker surface high over the sea, leading to an adverse impact on strength and direction of steering flows that inhibit warm moist advection and enhance cold dry advection transported to the focus region. Associated with this cold dry advection, adverse synoptic conditions of stratification and moisture for fog formation were produced, consequently causing failure of fog forecasting in the focus region. This study highlights the importance of accurate synoptic-scale information for improved CFSP fog forecasting, and enhances understanding of fog predictability from perspective of synoptic-scale circulation.展开更多
The effects of aerosol-radiation interactions(ARI)are not only important for regional and global climate,but they can also drive particulate matter(PM)pollution.In this study,the ARI contribution to the near-surface f...The effects of aerosol-radiation interactions(ARI)are not only important for regional and global climate,but they can also drive particulate matter(PM)pollution.In this study,the ARI contribution to the near-surface fine PM(PM_(2.5))concentrations in the Guanzhong Basin(GZB)is evaluated under four unfavorable synoptic patterns,including“northlow”,“transition”,“southeast-trough”,and“inland-high”,based on WRF-Chem model simulations of a persistent heavy PM pollution episode in January 2019.Simulations show that ARI consistently decreases both solar radiation reaching down to the surface(SWDOWN)and surface temperature(TSFC),which then reduces wind speed,induces sinking motion,and influences cloud formation in the GZB.However,large differences under the four synoptic patterns still exist.The average reductions of SWDOWN and daytime TSFC in the GZB range from 15.2%and 1.04°C in the case of the“transition”pattern to 26.7%and 1.69°C in the case of the“north-low”pattern,respectively.Furthermore,ARI suppresses the development of the planetary boundary layer(PBL),with the decrease of PBL height(PBLH)varying from 18.7%in the case of the“transition”pattern to 32.0%in the case of the“north-low”pattern.The increase of daytime near-surface PM_(2.5)in the GZB due to ARI is 12.0%,8.1%,9.5%,and 9.7%under the four synoptic patterns,respectively.Ensemble analyses also reveal that when near-surface PM_(2.5)concentrations are low,ARI tends to lower PM_(2.5)concentrations with decreased PBLH,which is caused by enhanced divergence or a transition from divergence to convergence in an area.ARI contributes 15%-25%toward the near-surface PM_(2.5)concentrations during the severe PM pollution period under the four synoptic patterns.展开更多
Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boun...Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results gen- erated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influ- ence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The verti- cal distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN con- centrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.展开更多
The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provide...The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provided associated with the fog for the period of 1960–2006. The sea fog is categorized by airflow pathways of backward trajectory cluster analysis with the surface observations derived from international comprehensive oceanatmosphere dataset(I_COADS) I_COADS datasets and contemporaneous wind fields from the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR) reanalysis. On the basis of the airflow paths, the large-scale lower-tropospheric circulation patterns and the associated surface divergence,the distribution of a vertical humidity, the horizontal water vapor transportation and the air-sea temperature difference are investigated and the major findings are summarized as follows.(1) Four primary clusters of the airflow paths that lead to spring sea fog formation are identified. They are originated from the northwest, east,southeast and southwest of the Yellow Sea, respectively.(2) Springtime Yellow Sea fog occurs under two typical weather patterns: the Yellow Sea high(YSH) and cyclone and anticyclone couplet(CAC). Each pattern appears by about equal chance in April but the YSH occurrence drops to around one third and the CAC rises to around two third of chance in May.(3) The common feature in the two types of synoptic conditions is that surface divergence center is located over the Yellow Sea.(4) For the YSH type of fog, water vapor comes mainly from local evaporation with a well-defined dry layer present in the lower atmosphere; for the CAC type of fog, however, water vapor comes mainly from areas outside the Yellow Sea with a thick surface layer of high humidity.(5) With the differences in weather patterns and its associated vertical distribution of the humidity and the transportation of water vapor, there are two types of sea fogs. Most fogs of the CAC types are "warm" fog, while fogs of YSH type have nearly equal chance to be "warm" and "cold" fog.展开更多
The flow patterns of Euro-Atlantic blocking events in winter are investigated by dividing the sector into three sub- regions: 60°-30°W (Greenland region); 20°W-30°E [eastern Atlantic-Europe (EA...The flow patterns of Euro-Atlantic blocking events in winter are investigated by dividing the sector into three sub- regions: 60°-30°W (Greenland region); 20°W-30°E [eastern Atlantic-Europe (EAE) region]; and 50°-90°E (Ural region). It is shown that blocking events in winter are extremely frequent in the three sub-regions. Composite 500-mb geopotential height fields for intense and long-lived blocking events demonstrate that the blocking fields over Greenland and Ural regions exhibit southwest-northeast (SW-NE) and southeast-northwest (SE-NW) oriented dipole-type patterns, respectively, while the composite field over the EAE region exhibits an Ω-type pattern. The type of composite blocking pattern seems to be related to the position of the blocking region relative to the positive center of the climatological stationary wave (CSW) anomaly existing near 10°W. The physical cause of why there are different composite blocking types in the three sub-regions is identified using a nonlinear multiscale interaction model. It is found that when the blocking event is in almost the same position as the positive CSW anomaly, the planetary-scale field can exhibit an Ω-type pattern due to the enhanced positive CSW anomaly. Neverthe- less, a SW-NE (SE-NW) oriented dipole-type block can occur due to the reduced positive CSW anomaly as it is farther in the west (east) of the positive CSW anomaly. The total fields of blocking in the three regions may exhibit a meandering flow comprised of several isolated anticyclonic and cyclonic vortices, which resembles the Berggren-Bolin-Rossby meandering jet type.展开更多
This paper concerns about the episodes of PM2.5 pollution that frequently occur in China in winter months.The severity of PM2.5 pollution is strongly dependent on the synoptic-scale atmospheric conditions.We combined ...This paper concerns about the episodes of PM2.5 pollution that frequently occur in China in winter months.The severity of PM2.5 pollution is strongly dependent on the synoptic-scale atmospheric conditions.We combined PM2.5 concentration data and meteorological data with the Hybrid Single Particle Lagrangian Integrated Trajectory model(HYSPLIT4)to investigate the dominant synoptic patterns and their relationships with PM2.5 pollution over the Beijing–Tianjin–Hebei(BTH)and Yangtze River Delta(YRD)regions in the winters of 2014–17.The transport of PM2.5 from the BTH to YRD regions was examined by using cluster analysis and HYSPLIT4.It is found that the level of PM2.5 pollution over the BTH region was higher than that over the YRD region.The concentration of PM2.5 in the atmosphere was more closely related to meteorological factors over the BTH region.The episodes of PM2.5 pollution over the BTH region in winter were related to weather patterns such as the rear of a high-pressure system approaching the sea,a high-pressure field,a saddle pressure field,and the leading edge of a cold front.By contrast,PM2.5 pollution episodes in the YRD region in winter were mainly associated with the external transport of cold air,a high-pressure field,and a uniform pressure field.Cluster analysis shows that the trajectories of PM2.5 were significantly different under different weather patterns.PM2.5 would be transported from the BTH to the YRD within 48 h when the PM2.5 pollution episodes were associated with three different kinds of weather patterns:the rear of a highpressure system approaching the sea,the high-pressure field,and the leading edge of a cold front over the BTH region.This suggests a possible method to predict PM2.5 pollution episodes based on synoptic-scale patterns.展开更多
Extreme rainfall associated with landfalling typhoon(ERLTC)can cause severe disasters and economic impacts throughout China.Improving the accuracy of ERLTC forecasts is therefore crucial in disaster prevention and mit...Extreme rainfall associated with landfalling typhoon(ERLTC)can cause severe disasters and economic impacts throughout China.Improving the accuracy of ERLTC forecasts is therefore crucial in disaster prevention and mitigation.The top 26 ERLTC events in China during 1960–2020 are investigated based on multi-source datasets.These ERLTC events are categorized into five main types according to the geographical location of the extreme precipitation and its position relative to the tropical cyclone(TC)center,namely:the typhoon inner-core rainfall in Taiwan(TWIC),typhoon inverted trough rainfall in Taiwan(TWIT),weak typhoon rainfall in Hainan(HNWK),strong typhoon rainfall in Zhejiang(ZJST)and inland typhoon remnant rainfall(ILRM).All the ERLTC events occurred in the weakening stage of TC after reaching its lifetime maximum intensity in convective cloud(TBB≤−32℃)regions over complex local terrain.The translational speeds of 20 TCs(76.9%of the total)were smaller than the climatological average(20.6 km h^(−1))during the extreme precipitation events.The differences are as follows:the TWIC and TWIT types are featured with different season,track and water vapor channel although both occurred in Taiwan.The other three types are distinguished by spinning track and strong convective cloud for HNWK type,strong TC intensity and binary TC interactions for ZJST type;and stagnation and strong westerly trough activity for ILRM type,respectively.These results are expected to provide useful clues for an in-depth understanding of ERLTC events over China.展开更多
基金supported by the National Key R&D Program of China (Nos. 2017YFC1404100 and 2017YFC1404104)the National Natural Science Foundation of China (Nos. 41705081 and 41575067)the Global Change Research Program of China (No. 2015CB953904)
文摘Fog has recently become a frequent high-impact weather phenomenon along the coastal regions of North China. Accurate fog forecasting remains challenging due to limited understanding of the predictability and mechanism of fog formation associated with synoptic-scale circulation. One frequent synoptic pattern of fog formation in this area is associated with cold front passage(cold-front synoptic pattern, CFSP). This paper explored the predictability of a typical CFSP fog event from the perspective of analyzing key characteristics of synoptic-scale circulation determining fog forecasting performance and the possible mechanism. The event was ensemble forecasted with the Weather Research and Forecasting model. Two groups of ensemble members with good and bad forecasting performance were selected and composited. Results showed that the predictability of this case was largely determined by the simulated strengths of the cold-front circulation(i.e., trough and ridge and the associated surface high). The bad-performing members tended to have a weaker ridge behind a stronger trough, and associated higher pressure over land and a weaker surface high over the sea, leading to an adverse impact on strength and direction of steering flows that inhibit warm moist advection and enhance cold dry advection transported to the focus region. Associated with this cold dry advection, adverse synoptic conditions of stratification and moisture for fog formation were produced, consequently causing failure of fog forecasting in the focus region. This study highlights the importance of accurate synoptic-scale information for improved CFSP fog forecasting, and enhances understanding of fog predictability from perspective of synoptic-scale circulation.
基金This work is financially supported by the National Key R&D Plan(Grant No.2017YFC0210000)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB40030200)+1 种基金the National Natural Science Foundation of China(Grant No.41975175)the Fundamental Research Funds for the Central Universities of China。
文摘The effects of aerosol-radiation interactions(ARI)are not only important for regional and global climate,but they can also drive particulate matter(PM)pollution.In this study,the ARI contribution to the near-surface fine PM(PM_(2.5))concentrations in the Guanzhong Basin(GZB)is evaluated under four unfavorable synoptic patterns,including“northlow”,“transition”,“southeast-trough”,and“inland-high”,based on WRF-Chem model simulations of a persistent heavy PM pollution episode in January 2019.Simulations show that ARI consistently decreases both solar radiation reaching down to the surface(SWDOWN)and surface temperature(TSFC),which then reduces wind speed,induces sinking motion,and influences cloud formation in the GZB.However,large differences under the four synoptic patterns still exist.The average reductions of SWDOWN and daytime TSFC in the GZB range from 15.2%and 1.04°C in the case of the“transition”pattern to 26.7%and 1.69°C in the case of the“north-low”pattern,respectively.Furthermore,ARI suppresses the development of the planetary boundary layer(PBL),with the decrease of PBL height(PBLH)varying from 18.7%in the case of the“transition”pattern to 32.0%in the case of the“north-low”pattern.The increase of daytime near-surface PM_(2.5)in the GZB due to ARI is 12.0%,8.1%,9.5%,and 9.7%under the four synoptic patterns,respectively.Ensemble analyses also reveal that when near-surface PM_(2.5)concentrations are low,ARI tends to lower PM_(2.5)concentrations with decreased PBLH,which is caused by enhanced divergence or a transition from divergence to convergence in an area.ARI contributes 15%-25%toward the near-surface PM_(2.5)concentrations during the severe PM pollution period under the four synoptic patterns.
基金sponsored by the U.S. Department of Energy (DOE)supported by the Ministry of Science and Technology of China (Grant Nos. 2010CB950804 and 2013CB955801)+1 种基金the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05100300)the National Natural Science Foundation of China (Grant No. 41305011)
文摘Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results gen- erated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influ- ence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The verti- cal distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN con- centrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.
基金The National Natural Science Foundation of China under contract No.41275025the Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences under contract No.XDA11010403the National Key Basic Research Program(973 Progrom)of China under controut No.2014CB953903
文摘The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provided associated with the fog for the period of 1960–2006. The sea fog is categorized by airflow pathways of backward trajectory cluster analysis with the surface observations derived from international comprehensive oceanatmosphere dataset(I_COADS) I_COADS datasets and contemporaneous wind fields from the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR) reanalysis. On the basis of the airflow paths, the large-scale lower-tropospheric circulation patterns and the associated surface divergence,the distribution of a vertical humidity, the horizontal water vapor transportation and the air-sea temperature difference are investigated and the major findings are summarized as follows.(1) Four primary clusters of the airflow paths that lead to spring sea fog formation are identified. They are originated from the northwest, east,southeast and southwest of the Yellow Sea, respectively.(2) Springtime Yellow Sea fog occurs under two typical weather patterns: the Yellow Sea high(YSH) and cyclone and anticyclone couplet(CAC). Each pattern appears by about equal chance in April but the YSH occurrence drops to around one third and the CAC rises to around two third of chance in May.(3) The common feature in the two types of synoptic conditions is that surface divergence center is located over the Yellow Sea.(4) For the YSH type of fog, water vapor comes mainly from local evaporation with a well-defined dry layer present in the lower atmosphere; for the CAC type of fog, however, water vapor comes mainly from areas outside the Yellow Sea with a thick surface layer of high humidity.(5) With the differences in weather patterns and its associated vertical distribution of the humidity and the transportation of water vapor, there are two types of sea fogs. Most fogs of the CAC types are "warm" fog, while fogs of YSH type have nearly equal chance to be "warm" and "cold" fog.
基金the support from the National Science Foundation of China(Grant No.41375067) "One-Hundred Talents Plan"of the Chinese Academy of Sciences(Grant No.Y163011)
文摘The flow patterns of Euro-Atlantic blocking events in winter are investigated by dividing the sector into three sub- regions: 60°-30°W (Greenland region); 20°W-30°E [eastern Atlantic-Europe (EAE) region]; and 50°-90°E (Ural region). It is shown that blocking events in winter are extremely frequent in the three sub-regions. Composite 500-mb geopotential height fields for intense and long-lived blocking events demonstrate that the blocking fields over Greenland and Ural regions exhibit southwest-northeast (SW-NE) and southeast-northwest (SE-NW) oriented dipole-type patterns, respectively, while the composite field over the EAE region exhibits an Ω-type pattern. The type of composite blocking pattern seems to be related to the position of the blocking region relative to the positive center of the climatological stationary wave (CSW) anomaly existing near 10°W. The physical cause of why there are different composite blocking types in the three sub-regions is identified using a nonlinear multiscale interaction model. It is found that when the blocking event is in almost the same position as the positive CSW anomaly, the planetary-scale field can exhibit an Ω-type pattern due to the enhanced positive CSW anomaly. Neverthe- less, a SW-NE (SE-NW) oriented dipole-type block can occur due to the reduced positive CSW anomaly as it is farther in the west (east) of the positive CSW anomaly. The total fields of blocking in the three regions may exhibit a meandering flow comprised of several isolated anticyclonic and cyclonic vortices, which resembles the Berggren-Bolin-Rossby meandering jet type.
基金Supported by the National Natural Science Foundation of China(91744311 and 91737101)
文摘This paper concerns about the episodes of PM2.5 pollution that frequently occur in China in winter months.The severity of PM2.5 pollution is strongly dependent on the synoptic-scale atmospheric conditions.We combined PM2.5 concentration data and meteorological data with the Hybrid Single Particle Lagrangian Integrated Trajectory model(HYSPLIT4)to investigate the dominant synoptic patterns and their relationships with PM2.5 pollution over the Beijing–Tianjin–Hebei(BTH)and Yangtze River Delta(YRD)regions in the winters of 2014–17.The transport of PM2.5 from the BTH to YRD regions was examined by using cluster analysis and HYSPLIT4.It is found that the level of PM2.5 pollution over the BTH region was higher than that over the YRD region.The concentration of PM2.5 in the atmosphere was more closely related to meteorological factors over the BTH region.The episodes of PM2.5 pollution over the BTH region in winter were related to weather patterns such as the rear of a high-pressure system approaching the sea,a high-pressure field,a saddle pressure field,and the leading edge of a cold front.By contrast,PM2.5 pollution episodes in the YRD region in winter were mainly associated with the external transport of cold air,a high-pressure field,and a uniform pressure field.Cluster analysis shows that the trajectories of PM2.5 were significantly different under different weather patterns.PM2.5 would be transported from the BTH to the YRD within 48 h when the PM2.5 pollution episodes were associated with three different kinds of weather patterns:the rear of a highpressure system approaching the sea,the high-pressure field,and the leading edge of a cold front over the BTH region.This suggests a possible method to predict PM2.5 pollution episodes based on synoptic-scale patterns.
基金supported by the National Natural Science Foundation of China(42192554,42175008,41905095,41930972)the S&T Development Fund of CAMS(2021KJ031)+2 种基金the National Basic Research Program of China(2015CB452804)the Open Grants of the State KeyLaboratory of SevereWeather(2021LASW-A12)the Basic Research Fund of CAMS(2020Y015).
文摘Extreme rainfall associated with landfalling typhoon(ERLTC)can cause severe disasters and economic impacts throughout China.Improving the accuracy of ERLTC forecasts is therefore crucial in disaster prevention and mitigation.The top 26 ERLTC events in China during 1960–2020 are investigated based on multi-source datasets.These ERLTC events are categorized into five main types according to the geographical location of the extreme precipitation and its position relative to the tropical cyclone(TC)center,namely:the typhoon inner-core rainfall in Taiwan(TWIC),typhoon inverted trough rainfall in Taiwan(TWIT),weak typhoon rainfall in Hainan(HNWK),strong typhoon rainfall in Zhejiang(ZJST)and inland typhoon remnant rainfall(ILRM).All the ERLTC events occurred in the weakening stage of TC after reaching its lifetime maximum intensity in convective cloud(TBB≤−32℃)regions over complex local terrain.The translational speeds of 20 TCs(76.9%of the total)were smaller than the climatological average(20.6 km h^(−1))during the extreme precipitation events.The differences are as follows:the TWIC and TWIT types are featured with different season,track and water vapor channel although both occurred in Taiwan.The other three types are distinguished by spinning track and strong convective cloud for HNWK type,strong TC intensity and binary TC interactions for ZJST type;and stagnation and strong westerly trough activity for ILRM type,respectively.These results are expected to provide useful clues for an in-depth understanding of ERLTC events over China.