This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted...This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted nuclei below some critical size is of vital importance as it improves the quality of product.The crystal growth rates for both size-independent and size-dependent cases are considered.A delay in recycle pipe is also included in the model.The space–time conservation element and solution element method,originally derived for non-reacting flows,is used to solve the model.This scheme has already been applied to a range of PDEs,mainly in the area of fluid mechanics.The numerical results are compared with those obtained from the Koren scheme,showing that the proposed scheme is more efficient.展开更多
This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts servi...This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts serving, it serves all customers in the queue in a single batch, which is the so-called batch service. If a new customer or a retrial customer finds all the customers’ rooms are occupied, he will decide whether or not to join the retrial orbit. By using the censoring technique and the matrix analysis method, we first obtain the decay function of the stationary distribution for the quantity of customers in the retrial orbit and the quantity of customers in the queue. Then based on the form of decay rate function and the Karamata Tauberian theorem, we finally get the exact tail asymptotics of the stationary distribution.展开更多
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact...Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.展开更多
Chemical batch processes have become significant in chemical manufacturing. In these processes, large numbers of chemical products are produced to satisfy human demands in daily life. Recently, economy globalization h...Chemical batch processes have become significant in chemical manufacturing. In these processes, large numbers of chemical products are produced to satisfy human demands in daily life. Recently, economy globalization has resulted, in growing worldwide competitions in tradi.tional chemical .process industry. In order to keep competitive in the global marketplace, each company must optimize its production management and set up a reactive system for market fluctuation. Scheduling is the core of production management in chemical processes. The goal of this paper is to review the recent developments in this challenging area. Classifications of batch scheduling problems and optimization methods are introduced. A comparison of six typical models is shown in a general benchmark example from the literature. Finally, challenges and applications in future research are discussed.展开更多
The population balance modeling is regarded as a universally accepted mathematical framework for dynamic simulation of various particulate processes, such as crystallization, granulation and polymerization. This artic...The population balance modeling is regarded as a universally accepted mathematical framework for dynamic simulation of various particulate processes, such as crystallization, granulation and polymerization. This article is concerned with the application of the method of characteristics (MOC) for solving population balance models describing batch crystallization process. The growth and nucleation are considered as dominant phenomena, while the breakage and aggregation are neglected. The numerical solutions of such PBEs require high order accuracy due to the occurrence of steep moving fronts and narrow peaks in the solutions. The MOC has been found to be a very effective technique for resolving sharp discontinuities. Different case studies are carried out to analyze the accuracy of proposed algorithm. For validation, the results of MOC are compared with the available analytical solutions and the results of finite volume schemes. The results of MOC were found to be in good agreement with analytical solutions and superior than those obtained by finite volume schemes.展开更多
The present study describes the production optimization of recombinant L-asparaginase II of Pectobacterium carotovorum MTCC 1428 in Escherichia coli BL21 (DE3) at batch and fed batch bioreactor level. Production of re...The present study describes the production optimization of recombinant L-asparaginase II of Pectobacterium carotovorum MTCC 1428 in Escherichia coli BL21 (DE3) at batch and fed batch bioreactor level. Production of recombinant L-asparaginase II in batch and fed batch mode was found to be 1.34 and 5.38 folds higher, respectively as compared to shake flask culture. SDS-PAGE and native PAGE of the purified enzyme revealed that molecular mass of the subunits and native enzyme are ~37.5 kDa and ~150 kDa, respectively. Optimum range of pH and temperature for hydrolysis of L-asparagine were found to be 7.5 - 8.5 and 47°C - 52°C, respectively. The recombinant enzyme is very specific for its natural substrate, L-asparagine. The activity of recombinant L-asparaginase II is improved by mono cations and diverse effectors including Na+, K+, L-cystine, L-histidine, glutathione and 2-mercaptoethanol whereas, it is moderately inhibited by different divalent cations and thiol group blocking reagent. The kinetic parameters Km, Vmax, kcat and Km/Kcat of purified recombinant L-asparaginase II were determined. The purified L-asparaginase II possesses no partial glutaminase activity, which is prerequisite to reduce the possibility of side effects during the course of anti-cancer therapy.展开更多
文摘This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted nuclei below some critical size is of vital importance as it improves the quality of product.The crystal growth rates for both size-independent and size-dependent cases are considered.A delay in recycle pipe is also included in the model.The space–time conservation element and solution element method,originally derived for non-reacting flows,is used to solve the model.This scheme has already been applied to a range of PDEs,mainly in the area of fluid mechanics.The numerical results are compared with those obtained from the Koren scheme,showing that the proposed scheme is more efficient.
文摘This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts serving, it serves all customers in the queue in a single batch, which is the so-called batch service. If a new customer or a retrial customer finds all the customers’ rooms are occupied, he will decide whether or not to join the retrial orbit. By using the censoring technique and the matrix analysis method, we first obtain the decay function of the stationary distribution for the quantity of customers in the retrial orbit and the quantity of customers in the queue. Then based on the form of decay rate function and the Karamata Tauberian theorem, we finally get the exact tail asymptotics of the stationary distribution.
基金funded by National Natural Science Foundation of China(Grant Nos.42272333,42277147).
文摘Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.
基金Supported by the National Natural Science Foundation of China (20536020, 20876056).
文摘Chemical batch processes have become significant in chemical manufacturing. In these processes, large numbers of chemical products are produced to satisfy human demands in daily life. Recently, economy globalization has resulted, in growing worldwide competitions in tradi.tional chemical .process industry. In order to keep competitive in the global marketplace, each company must optimize its production management and set up a reactive system for market fluctuation. Scheduling is the core of production management in chemical processes. The goal of this paper is to review the recent developments in this challenging area. Classifications of batch scheduling problems and optimization methods are introduced. A comparison of six typical models is shown in a general benchmark example from the literature. Finally, challenges and applications in future research are discussed.
文摘The population balance modeling is regarded as a universally accepted mathematical framework for dynamic simulation of various particulate processes, such as crystallization, granulation and polymerization. This article is concerned with the application of the method of characteristics (MOC) for solving population balance models describing batch crystallization process. The growth and nucleation are considered as dominant phenomena, while the breakage and aggregation are neglected. The numerical solutions of such PBEs require high order accuracy due to the occurrence of steep moving fronts and narrow peaks in the solutions. The MOC has been found to be a very effective technique for resolving sharp discontinuities. Different case studies are carried out to analyze the accuracy of proposed algorithm. For validation, the results of MOC are compared with the available analytical solutions and the results of finite volume schemes. The results of MOC were found to be in good agreement with analytical solutions and superior than those obtained by finite volume schemes.
文摘The present study describes the production optimization of recombinant L-asparaginase II of Pectobacterium carotovorum MTCC 1428 in Escherichia coli BL21 (DE3) at batch and fed batch bioreactor level. Production of recombinant L-asparaginase II in batch and fed batch mode was found to be 1.34 and 5.38 folds higher, respectively as compared to shake flask culture. SDS-PAGE and native PAGE of the purified enzyme revealed that molecular mass of the subunits and native enzyme are ~37.5 kDa and ~150 kDa, respectively. Optimum range of pH and temperature for hydrolysis of L-asparagine were found to be 7.5 - 8.5 and 47°C - 52°C, respectively. The recombinant enzyme is very specific for its natural substrate, L-asparagine. The activity of recombinant L-asparaginase II is improved by mono cations and diverse effectors including Na+, K+, L-cystine, L-histidine, glutathione and 2-mercaptoethanol whereas, it is moderately inhibited by different divalent cations and thiol group blocking reagent. The kinetic parameters Km, Vmax, kcat and Km/Kcat of purified recombinant L-asparaginase II were determined. The purified L-asparaginase II possesses no partial glutaminase activity, which is prerequisite to reduce the possibility of side effects during the course of anti-cancer therapy.