This paper reports obtaining of useful and high-value materials from sesame seed cake (SSC). For this purpose, SSC sample was burned for 30 s using Nd: YAG laser with output power 60 W. The products of this process an...This paper reports obtaining of useful and high-value materials from sesame seed cake (SSC). For this purpose, SSC sample was burned for 30 s using Nd: YAG laser with output power 60 W. The products of this process and non-burned SSC were characterized by X-ray diffractometer (XRD), energy dispersive x-ray (EDX) and Fourier transform infrared (FTIR) so as to investigate its crystal structure and chemical components. XRD results of the SSC before burning process showed amorphous silica, rhombohedral phase of carbon, monoclinic phase of aluminum chloride, the hexagonal phase of moissanite-4H, (yellow, black) and hexagonal phase of graphite-2H, C (black). While the results of the burned SSC sample showed that the burning process using the power of Nd: YAG laser cased in appearing of crystalline hexagonal phase for silica and Carbon Nitride and converting the rhombohedral phase of Carbon into hexagonal phase. FTIR showed a number of absorbance peaks assigned to silica.展开更多
文摘This paper reports obtaining of useful and high-value materials from sesame seed cake (SSC). For this purpose, SSC sample was burned for 30 s using Nd: YAG laser with output power 60 W. The products of this process and non-burned SSC were characterized by X-ray diffractometer (XRD), energy dispersive x-ray (EDX) and Fourier transform infrared (FTIR) so as to investigate its crystal structure and chemical components. XRD results of the SSC before burning process showed amorphous silica, rhombohedral phase of carbon, monoclinic phase of aluminum chloride, the hexagonal phase of moissanite-4H, (yellow, black) and hexagonal phase of graphite-2H, C (black). While the results of the burned SSC sample showed that the burning process using the power of Nd: YAG laser cased in appearing of crystalline hexagonal phase for silica and Carbon Nitride and converting the rhombohedral phase of Carbon into hexagonal phase. FTIR showed a number of absorbance peaks assigned to silica.