Many spot defects were found on the surface of a cold-rolled Fe-36%Ni alloy strip produced in a factory,which seriously affected the surface quality of the product.Through metallographic microscopy and scanning electr...Many spot defects were found on the surface of a cold-rolled Fe-36%Ni alloy strip produced in a factory,which seriously affected the surface quality of the product.Through metallographic microscopy and scanning electron microscopy analyses,it was found that the spot defects were caused by the residual oxide layer on the surface of the cold-rolled Fe-36%Ni alloy strip after hydrogen annealing.By properly increasing the grinding amount of the blank before cold rolling to remove the oxide layer,the spot defects on the surface of the cold-rolled strip were effectively eliminated,and the surface quality of the product was ensured.展开更多
Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurem...Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength.展开更多
2195 Al-Li alloy was deformed through extrusion followed by cold-rolling.The textures of the extruded plate and cold-rolled sheet after solutionization were investigated.The longitudinal strength and precipitates afte...2195 Al-Li alloy was deformed through extrusion followed by cold-rolling.The textures of the extruded plate and cold-rolled sheet after solutionization were investigated.The longitudinal strength and precipitates after T8 aging were measured and observed,respectively.Compared to those in the sheet,T1(Al2 Cu Li)precipitates in the extruded plate after T8 aging are non-uniform,and their incubation time is shorter.The extruded plate after solutionization is not recrystallized and contains 55.28%deformation textures of Brass and S.In the cold-rolled sheet after solutionization,massive recrystallization occurs and S component disappears.Due to the higher fraction of Brass and S textures with higher Schmid factor and lower equivalent sliding system number,the extruded plate possesses an yield strength not higher or even lower,but a tensile strength higher,than the cold-rolled sheet after solutionization.In addition,during the aging after pre-stretch,these textures promote T1 precipitation on preferred sliding planes of cold-rolled sheet and cause its higher yield strength and tensile strength after T8 aging.展开更多
Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained s...Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained sludge and calcium salt sludge separating recovery, was proposed. As shown by the research results, after the two-stage process treatment, the effluent water can steadily reach the emission standards, the sludge yield can be decreased by more than 8% ; within the heavy metal-contained sludge, the recovery rates of Fc,Cr and Ni can either reach or surpass 95% ,and the total content ofF and S can drop to around 3%. Therefore,the sludge in the front part can be used as ferric dust. In the calcium salt sludge ,the recovery rate of F can either reach or surpass 85% ,and the total contents of Fe,Cr and Ni can fall below 0.5%. So the sludge in the rear part can be used as fluorgypsum or fluorite. Meanwhile,the results of the analysis on heavy metals leaching toxicity and morphologic distribution indicate that the two kinds of sectionalized sludge are not classified as hazardous wastes, which have a stable behavior and better utilization values compared with the former mixed- sludge.展开更多
With a complicated composition, large rolling sludge has been a focal point concerning neither at home nor abroad have any technologies suitable for bulk utilization of stainless steel cold- production and serious dam...With a complicated composition, large rolling sludge has been a focal point concerning neither at home nor abroad have any technologies suitable for bulk utilization of stainless steel cold- production and serious damage to the environment, stainless steel cold- environmental protection for stainless steel enterprises. Up to now, come into being that are not only proper, safe and economical but also rolling sludge. Based on the characteristics of the stainless steel cold- rolling sludge, orthogonal experiments were carried out on pellet proportioning and high-temperature roasting, and major metallurgical properties of sludge pellets were also tested. As the results show, pellets with 30% addition of cold-rolling sludge are qualified regarding their compressive strength, chemical composition and major metallurgical properties. No adverse impact happens to the blast furnace operation when sludge pellets account for 10% of the blast furnace raw materials. Therefore, the technical route applied in this paper is proved simple, feasible and environmentally friendly for cold-rolling sludge treatment.展开更多
The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (...The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (SEM), the optical microscope (OM), and the transmission electronic microscope (TEM) techniques. It was observed that as the amount of deformation increases, the flaws nucleate at the out-walls of the cold rolled tube, the stress-induced martensites change from (111 ) type Ⅰ twins to (011) type Ⅱ twins and then to (100) compound twins, nanocrystals and bulk amorphisation happen, the high density dislocation causes stress concentration at the out-walls of the Ti50Ni50 cold-rolled tube, and then precipitates its fracture, and the Ti2Ni particles strengthen the grain boundaries and curb the dislocation movements during plastic deformation. The inhomogeneity level of the grains in the Ti50Ni50 alloy plays an important role on the fracture of the Ti50Ni50 cold rolled tube.展开更多
Cold-rolled advanced high-strength steel sheets have become the material of choice for the automotive industry because of their unique attributes of high strength and balanced mechanical properties.High-hydrogen gas j...Cold-rolled advanced high-strength steel sheets have become the material of choice for the automotive industry because of their unique attributes of high strength and balanced mechanical properties.High-hydrogen gas jet cooling and water quenching are the most commonly used ultrafast cooling technologies for producing martensite-containing high-strength steel sheets.The water quenching technology ensures the fastest industrial cooling rate of 1 000 K/s;therefore,it has the highest potential with respect to saving alloys.In this study,the water quenching of a C-Mn-containing steel sheet is simulated during continuous annealing to investigate the effect of water quenching and tempering parameters on its mechanical properties.The results reveal that at low quenching temperatures,the strength of the steel sheet decreases as the soaking temperature increases.However,at high quenching temperatures,a high soaking temperature corresponds to increased strength after quenching,regardless of whether the material was austenitized in the single austenite zone or the inter-critical zone.Therefore,a high quenching temperature always results in a high strength and a high yield ratio after quenching.Low-temperature overaging(tempering) considerably influences the yield strength and yield ratio,and the extent of this influence is correlated with the soaking temperature.展开更多
The recrystallization and texture evolution of cold-rolled FeCrAl-0.65 Nb and FeCrAl-1.2 Nb alloys thin-wall tubes annealed at 600−900℃ for 1−600 min were investigated.The microstructures were characterized by electr...The recrystallization and texture evolution of cold-rolled FeCrAl-0.65 Nb and FeCrAl-1.2 Nb alloys thin-wall tubes annealed at 600−900℃ for 1−600 min were investigated.The microstructures were characterized by electron back scattering diffraction,electron probe micro-analyzer and transmission electron microscopy.The Vickers hardness and room temperature tensile properties were tested.The results showed that the hardness of fully recrystallized FeCrAl-1.2 Nb alloy was higher and more likely to recrystallize than FeCrAl-0.65 Nb alloy.The weak texture strength of annealing sample was obtained and the proportion of<111>//ND texture increased.The fine Laves phase distributed uniformly in FeCrAl-0.65 Nb alloy had good pinning effect and inhibited recrystallization.Higher Nb content had little effects on tensile properties of thin-wall tube,and induced the formation of larger Laves phase.There was less fine Laves phase pinning in the large area adjacent to the blocky Laves phase,which resulted in easy recrystallization in FeCrAl-1.2 Nb alloy.展开更多
Texture evolution of high-manganese twining-induced plasticity (TWIP) steels (Fe-16Mn-0.6C) during cold-rolling is studied by means of quantitative orientation distribution function (ODF)analysis.Thickness reductions ...Texture evolution of high-manganese twining-induced plasticity (TWIP) steels (Fe-16Mn-0.6C) during cold-rolling is studied by means of quantitative orientation distribution function (ODF)analysis.Thickness reductions of the specimens during cold-rolling are 10%,20%,30%,50% and 65%,respectively.Evolution of texture is of the Brass type,which is typical for low-stacking fault energy (SFE) materials.The contribution of deformation twinning to the development of texture is clearly illustrated by the monotonic increase of the twinned Cu component.In the present study,the deformation twinning was identified as significantly contributing to deformation up to the maximum reduction applied.These results are useful for the prediction and control of the texture in TWIP steels.展开更多
The study investigates the effects of cold-rolling reduction on the recrystallization-annealed Nb + Ti stabilized ultra-pure ferritic stainless steel with 21% Cr in regards to its microstructure evolution, grain size...The study investigates the effects of cold-rolling reduction on the recrystallization-annealed Nb + Ti stabilized ultra-pure ferritic stainless steel with 21% Cr in regards to its microstructure evolution, grain size,recrystallization texture, and grain boundary characteristic distribution and disorientation angle. The research employed the electron back scattered diffraction technique and its results have shown that the average grain size was reduced and the {111 / 〈 112 〉 component was strengthened,which rotated towards {5541 〈225 〉 and {4451 〈384 〉 ,with an increasing cold-rolling reduction. The number fraction of the low-angle grain boundary and the coincidence site lattice (CSL) boundary ,which was mainly made up of ∑3,∑7∑11 and ∑13b, also increased.展开更多
Cold-rolled martensitic steel sheets produced on continuous annealing lines with water quenching facility,have advantages of high strength and low alloying element contents.These are in good accordance with the trend ...Cold-rolled martensitic steel sheets produced on continuous annealing lines with water quenching facility,have advantages of high strength and low alloying element contents.These are in good accordance with the trend of light-weighting and fuel saving for automotive steel.In this article,a cold-rolled martensitic steel is studied to investigate the effect of annealing parameters on its mechanical properties.It is found that the quenching temperature and the slow cooling speed as well as the overageing temperature have significant influence on the strength of the experimental steel.The temperature zone at which the austenite decomposition is slow or has not started may be chosen as the quenching temperature to ensure the steel’s strength stability.The slow cooling speed also influences the steel’s strength greatly.A high cooling rate will lead to significantly higher strength.Tempering would decrease the steel’s tensile strength but would increase its yield strength.展开更多
Many advanced technologies have been applied in developing the automatic measuring device for testing transverse thickness difference of cold-rolling steel sheet,such as the technologies of automatic control,sensor me...Many advanced technologies have been applied in developing the automatic measuring device for testing transverse thickness difference of cold-rolling steel sheet,such as the technologies of automatic control,sensor measurement,marking identification,photographic location,computer application and information transmission.This measuring device can measure the transverse thickness difference of the steel plate accurately and quickly,with a high detection level of automation.It is an effective detection equipment for transverse thickness control of steel plate.Horizontal width of steel plate measuring 0.8-1.4 m, horizontal measurement point positioning accuracy±0.02 mm,thickness range 0.2-2.0 mm, measurement accuracy within±1μm.展开更多
Cold-rolled martensitic steel sheets are becoming widely applied in the automotive industry because of their ultra-high strength,which may result in satisfactory weight reduction. The grades of martensitic steel sheet...Cold-rolled martensitic steel sheets are becoming widely applied in the automotive industry because of their ultra-high strength,which may result in satisfactory weight reduction. The grades of martensitic steel sheets are classified based on their tensile strength,which ranges from 980 to 1 700 MPa. The main applications include a series of structural parts of uniform cross-section or simple shape,such as bumper beams,door beams and door sills,etc. The study and development of cold-rolled martensitic steel sheets date back to 2007 in Baosteel,and some grades became commercially available in 2009. By 2015,Baosteel had commercially supplied thousands of tons of these steel sheets with tensile strength up to 1 400 MPa. Currently,1 500 MPa martensitic steel sheet is commercially available and 1 700 MPa martensitic steel sheet has been successfully produced. The process technology and application guides of Basoteel 's cold-rolled martensitic steels are summarized and analyzed in order to assist ongoing research and ensure correct applications of these ultra-high strength steel sheets.展开更多
This study presents the fatigue response of 304 stainless steel foil, cold-rolled to a thickness of 3.2 μm with 87 percent cold work at orientations of 0, 45, and 90 degrees to the direction of rolling. Fatigue speci...This study presents the fatigue response of 304 stainless steel foil, cold-rolled to a thickness of 3.2 μm with 87 percent cold work at orientations of 0, 45, and 90 degrees to the direction of rolling. Fatigue specimens were fabricated by laminating a supportive layer of 20-μm polyimide film to one side of the foil and patterning 242 crack initiation features by photolithographic process. Progression of fatigue damage was determined through electrical resistance measurement. The fatigue response was demonstrated to be largely affected by anisotropy existing between the rolling direction and the off-axis orientations. Fatigue cracks that traveled in a direction parallel to the elongated grains (cyclic loads applied at 90-degree orientation to foil rolling direction) had the most fatigue response (undesirable characteristic). The construction of the specimens with thin foil supported by a film backing contributed to high fatigue threshold.展开更多
Ultra-low carbon(ULC),cold-rolled sheet steels for porcelain enameling containing alloys of titanium and boron are studied. The microstructure,mechanical properties,inclusions,and precipitates of the sheet steels ar...Ultra-low carbon(ULC),cold-rolled sheet steels for porcelain enameling containing alloys of titanium and boron are studied. The microstructure,mechanical properties,inclusions,and precipitates of the sheet steels are analyzed. The hydrogen permeation time of the sheet steels as-annealed and after skin-passed or cold-rolled at different reductions are measured. It is show n that the sheet steels possess different features of enameling properties in hydrogen permeability,fishscale resistance,and pinhole resistance.展开更多
The influence of cold rolling reduction on microstructure and mechanical properties of the twinning induced plasticity(TWIP) steel with a chemical composition of Fe-20Mn-3Si-3Al-0.045 C has been investigated.Tensile t...The influence of cold rolling reduction on microstructure and mechanical properties of the twinning induced plasticity(TWIP) steel with a chemical composition of Fe-20Mn-3Si-3Al-0.045 C has been investigated.Tensile tests were carried out to explore the mechanical properties of TWIP steel with different cold rolling reductions.The microstructures were observed by optical microscopy and transmission electron microscopy(TEM).The misorientation and the development of recrystallization texture in TWIP steel sheets were investigated by Electron Back Scatter Diffraction(EBSD) technique.The results indicated that the steel exhibited attractively mechanical properties when cold rolling reduction was about 10%.The tensile strength of the steel with a rolling reduction of 10%is higher than 900 MPa and the yield strength is about 800 MPa,while the elongation is above 35%.The microstructure is composed of austenitic matrix and deformation twins at room temperature,at the same time,a significant amount of deformation twins,stacking faults and dislocations are observed by TEM.TEM observations showed the presence of deformation twinning in the sample at low rolling reduction.As the strain increases the volume fraction of twins increases.Mechanical twins play a dominant role during deformation and result in excellent mechanical properties for the investigated steel.By TEM observation,the possible deformation mechanisms can be suggested as:with the increasing strain,formation of the twin will gradually play a more important role during deformation.The interaction between twins and dislocations enhances the strain hardening rate in the sample.Consequently,the necking is delayed and a good ductility is obtained.Twins were always observed in the region with high density of dislocation and faults,suggesting that the interaction among blocked dislocations and faults as well as deformation twins promote the increase in material strength.EBSD observation showed that the textures has evolved according to the following trend:the brass orientation {110}〈112〉and Goss orientation {110}〈001〉are dominant at every strain level,those intensities increase with increasing strain,while with the increase of the strain level,the change of S orientation {123}〈634〉was not obviously.展开更多
The detection and classification of real-time surface defects play an important role in automotive sheet inspection and production. In this paper, an automatic surface inspection system (ASIS) based on signal proces...The detection and classification of real-time surface defects play an important role in automotive sheet inspection and production. In this paper, an automatic surface inspection system (ASIS) based on signal processing in Baosteel NO. 4 cold-rolled plant is briefly presented. We demonstrate that the strip surface defect properties such as image, type, pitch, and position can be accurately calculated and classified by the automatic surface inspection system. In the manufacturing of the high-quality cold-rolled strips, it is necessary that the real-time surface defects can be detected and transferred by the automatic surface inspection system combined with annealing lines and recoiling lines.展开更多
SiC_w/Al composite was fabricated through a squeeze cast route and coldrolled to about 30 percent, 50 percent and 70 percent reduction In thickness, respectively. Thelength of whiskers in the composite before and afte...SiC_w/Al composite was fabricated through a squeeze cast route and coldrolled to about 30 percent, 50 percent and 70 percent reduction In thickness, respectively. Thelength of whiskers in the composite before and after rolling was examined using SEM. Some of therolled composites were recrystallization annealed to remove the work hardening of matrix alloy. Thetensile strength of the rolled and annealed SiC_w/Al composites was examined and then associatedwith the change of the whisker length and the work hardening of matrix alloy. It was found that thetensile strength is a function of the degree of cold rolling. For the cold rolled composites, withthe increase in the degree of cold rolling, the tensile strength increases at first, and decreaseswhen the degree of cold rolling exceeds 50 percent. For the annealed ones, however; the tensilestrength decreases monotonously with the increase in rolling degree. The different changes intensile strength between the rolled and annealed composites could be attributed to the result of thecompetition between the work hardening of matrix resulting from the cold rolling and the worksoftening arising from the change of whisker length.展开更多
TWIP steels with 70% cold-rolled reduction were heated at 500, 600, 700, 800, 900, 1000, and 1100 ℃. Then, the properties before and after heating were examined through tensile and hardness experiments. The microstru...TWIP steels with 70% cold-rolled reduction were heated at 500, 600, 700, 800, 900, 1000, and 1100 ℃. Then, the properties before and after heating were examined through tensile and hardness experiments. The microstructures were also analyzed by optical microscopy and transmission electron microscopy. The relationship between the properties and microstructure was examined as well. Finally, the evolution process of cold-rolled microstructures during heating was discussed in detail. Moreover, some conclusions can be drawn, and the heating evolution characteristics are described.展开更多
The formation mechanism of the cold-rolled strip shape with high tension was studied. An advanced method to calculate the allowable variation of strip transverse profiles was established by the strip buckling criterio...The formation mechanism of the cold-rolled strip shape with high tension was studied. An advanced method to calculate the allowable variation of strip transverse profiles was established by the strip buckling criterion, which can be more properly used in cold rolling. With this method, the aim allowable variation of the product strip transverse profile and the required transverse profile range of incoming strips can be reached. Besides, this method has been successfully applied in a domestic tandem cold mill, and the transverse profile range of incoming strips suggested with this method is more practicable and complete. Consequently, the good performance is acquired.展开更多
文摘Many spot defects were found on the surface of a cold-rolled Fe-36%Ni alloy strip produced in a factory,which seriously affected the surface quality of the product.Through metallographic microscopy and scanning electron microscopy analyses,it was found that the spot defects were caused by the residual oxide layer on the surface of the cold-rolled Fe-36%Ni alloy strip after hydrogen annealing.By properly increasing the grinding amount of the blank before cold rolling to remove the oxide layer,the spot defects on the surface of the cold-rolled strip were effectively eliminated,and the surface quality of the product was ensured.
基金Project (50874056) supported by the National Natural Science Foundation of China
文摘Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength.
基金Project(2013AA032401)supported by the National High Technology Research and Development Program of China。
文摘2195 Al-Li alloy was deformed through extrusion followed by cold-rolling.The textures of the extruded plate and cold-rolled sheet after solutionization were investigated.The longitudinal strength and precipitates after T8 aging were measured and observed,respectively.Compared to those in the sheet,T1(Al2 Cu Li)precipitates in the extruded plate after T8 aging are non-uniform,and their incubation time is shorter.The extruded plate after solutionization is not recrystallized and contains 55.28%deformation textures of Brass and S.In the cold-rolled sheet after solutionization,massive recrystallization occurs and S component disappears.Due to the higher fraction of Brass and S textures with higher Schmid factor and lower equivalent sliding system number,the extruded plate possesses an yield strength not higher or even lower,but a tensile strength higher,than the cold-rolled sheet after solutionization.In addition,during the aging after pre-stretch,these textures promote T1 precipitation on preferred sliding planes of cold-rolled sheet and cause its higher yield strength and tensile strength after T8 aging.
文摘Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained sludge and calcium salt sludge separating recovery, was proposed. As shown by the research results, after the two-stage process treatment, the effluent water can steadily reach the emission standards, the sludge yield can be decreased by more than 8% ; within the heavy metal-contained sludge, the recovery rates of Fc,Cr and Ni can either reach or surpass 95% ,and the total content ofF and S can drop to around 3%. Therefore,the sludge in the front part can be used as ferric dust. In the calcium salt sludge ,the recovery rate of F can either reach or surpass 85% ,and the total contents of Fe,Cr and Ni can fall below 0.5%. So the sludge in the rear part can be used as fluorgypsum or fluorite. Meanwhile,the results of the analysis on heavy metals leaching toxicity and morphologic distribution indicate that the two kinds of sectionalized sludge are not classified as hazardous wastes, which have a stable behavior and better utilization values compared with the former mixed- sludge.
文摘With a complicated composition, large rolling sludge has been a focal point concerning neither at home nor abroad have any technologies suitable for bulk utilization of stainless steel cold- production and serious damage to the environment, stainless steel cold- environmental protection for stainless steel enterprises. Up to now, come into being that are not only proper, safe and economical but also rolling sludge. Based on the characteristics of the stainless steel cold- rolling sludge, orthogonal experiments were carried out on pellet proportioning and high-temperature roasting, and major metallurgical properties of sludge pellets were also tested. As the results show, pellets with 30% addition of cold-rolling sludge are qualified regarding their compressive strength, chemical composition and major metallurgical properties. No adverse impact happens to the blast furnace operation when sludge pellets account for 10% of the blast furnace raw materials. Therefore, the technical route applied in this paper is proved simple, feasible and environmentally friendly for cold-rolling sludge treatment.
文摘The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (SEM), the optical microscope (OM), and the transmission electronic microscope (TEM) techniques. It was observed that as the amount of deformation increases, the flaws nucleate at the out-walls of the cold rolled tube, the stress-induced martensites change from (111 ) type Ⅰ twins to (011) type Ⅱ twins and then to (100) compound twins, nanocrystals and bulk amorphisation happen, the high density dislocation causes stress concentration at the out-walls of the Ti50Ni50 cold-rolled tube, and then precipitates its fracture, and the Ti2Ni particles strengthen the grain boundaries and curb the dislocation movements during plastic deformation. The inhomogeneity level of the grains in the Ti50Ni50 alloy plays an important role on the fracture of the Ti50Ni50 cold rolled tube.
文摘Cold-rolled advanced high-strength steel sheets have become the material of choice for the automotive industry because of their unique attributes of high strength and balanced mechanical properties.High-hydrogen gas jet cooling and water quenching are the most commonly used ultrafast cooling technologies for producing martensite-containing high-strength steel sheets.The water quenching technology ensures the fastest industrial cooling rate of 1 000 K/s;therefore,it has the highest potential with respect to saving alloys.In this study,the water quenching of a C-Mn-containing steel sheet is simulated during continuous annealing to investigate the effect of water quenching and tempering parameters on its mechanical properties.The results reveal that at low quenching temperatures,the strength of the steel sheet decreases as the soaking temperature increases.However,at high quenching temperatures,a high soaking temperature corresponds to increased strength after quenching,regardless of whether the material was austenitized in the single austenite zone or the inter-critical zone.Therefore,a high quenching temperature always results in a high strength and a high yield ratio after quenching.Low-temperature overaging(tempering) considerably influences the yield strength and yield ratio,and the extent of this influence is correlated with the soaking temperature.
基金Project(2019YFB1901002)supported by the Key Project of Nuclear Safety and Advanced Nuclear Technology,ChinaProject supported by State Key Laboratory of Powder Metallurgy,China。
文摘The recrystallization and texture evolution of cold-rolled FeCrAl-0.65 Nb and FeCrAl-1.2 Nb alloys thin-wall tubes annealed at 600−900℃ for 1−600 min were investigated.The microstructures were characterized by electron back scattering diffraction,electron probe micro-analyzer and transmission electron microscopy.The Vickers hardness and room temperature tensile properties were tested.The results showed that the hardness of fully recrystallized FeCrAl-1.2 Nb alloy was higher and more likely to recrystallize than FeCrAl-0.65 Nb alloy.The weak texture strength of annealing sample was obtained and the proportion of<111>//ND texture increased.The fine Laves phase distributed uniformly in FeCrAl-0.65 Nb alloy had good pinning effect and inhibited recrystallization.Higher Nb content had little effects on tensile properties of thin-wall tube,and induced the formation of larger Laves phase.There was less fine Laves phase pinning in the large area adjacent to the blocky Laves phase,which resulted in easy recrystallization in FeCrAl-1.2 Nb alloy.
文摘Texture evolution of high-manganese twining-induced plasticity (TWIP) steels (Fe-16Mn-0.6C) during cold-rolling is studied by means of quantitative orientation distribution function (ODF)analysis.Thickness reductions of the specimens during cold-rolling are 10%,20%,30%,50% and 65%,respectively.Evolution of texture is of the Brass type,which is typical for low-stacking fault energy (SFE) materials.The contribution of deformation twinning to the development of texture is clearly illustrated by the monotonic increase of the twinned Cu component.In the present study,the deformation twinning was identified as significantly contributing to deformation up to the maximum reduction applied.These results are useful for the prediction and control of the texture in TWIP steels.
文摘The study investigates the effects of cold-rolling reduction on the recrystallization-annealed Nb + Ti stabilized ultra-pure ferritic stainless steel with 21% Cr in regards to its microstructure evolution, grain size,recrystallization texture, and grain boundary characteristic distribution and disorientation angle. The research employed the electron back scattered diffraction technique and its results have shown that the average grain size was reduced and the {111 / 〈 112 〉 component was strengthened,which rotated towards {5541 〈225 〉 and {4451 〈384 〉 ,with an increasing cold-rolling reduction. The number fraction of the low-angle grain boundary and the coincidence site lattice (CSL) boundary ,which was mainly made up of ∑3,∑7∑11 and ∑13b, also increased.
文摘Cold-rolled martensitic steel sheets produced on continuous annealing lines with water quenching facility,have advantages of high strength and low alloying element contents.These are in good accordance with the trend of light-weighting and fuel saving for automotive steel.In this article,a cold-rolled martensitic steel is studied to investigate the effect of annealing parameters on its mechanical properties.It is found that the quenching temperature and the slow cooling speed as well as the overageing temperature have significant influence on the strength of the experimental steel.The temperature zone at which the austenite decomposition is slow or has not started may be chosen as the quenching temperature to ensure the steel’s strength stability.The slow cooling speed also influences the steel’s strength greatly.A high cooling rate will lead to significantly higher strength.Tempering would decrease the steel’s tensile strength but would increase its yield strength.
文摘Many advanced technologies have been applied in developing the automatic measuring device for testing transverse thickness difference of cold-rolling steel sheet,such as the technologies of automatic control,sensor measurement,marking identification,photographic location,computer application and information transmission.This measuring device can measure the transverse thickness difference of the steel plate accurately and quickly,with a high detection level of automation.It is an effective detection equipment for transverse thickness control of steel plate.Horizontal width of steel plate measuring 0.8-1.4 m, horizontal measurement point positioning accuracy±0.02 mm,thickness range 0.2-2.0 mm, measurement accuracy within±1μm.
文摘Cold-rolled martensitic steel sheets are becoming widely applied in the automotive industry because of their ultra-high strength,which may result in satisfactory weight reduction. The grades of martensitic steel sheets are classified based on their tensile strength,which ranges from 980 to 1 700 MPa. The main applications include a series of structural parts of uniform cross-section or simple shape,such as bumper beams,door beams and door sills,etc. The study and development of cold-rolled martensitic steel sheets date back to 2007 in Baosteel,and some grades became commercially available in 2009. By 2015,Baosteel had commercially supplied thousands of tons of these steel sheets with tensile strength up to 1 400 MPa. Currently,1 500 MPa martensitic steel sheet is commercially available and 1 700 MPa martensitic steel sheet has been successfully produced. The process technology and application guides of Basoteel 's cold-rolled martensitic steels are summarized and analyzed in order to assist ongoing research and ensure correct applications of these ultra-high strength steel sheets.
文摘This study presents the fatigue response of 304 stainless steel foil, cold-rolled to a thickness of 3.2 μm with 87 percent cold work at orientations of 0, 45, and 90 degrees to the direction of rolling. Fatigue specimens were fabricated by laminating a supportive layer of 20-μm polyimide film to one side of the foil and patterning 242 crack initiation features by photolithographic process. Progression of fatigue damage was determined through electrical resistance measurement. The fatigue response was demonstrated to be largely affected by anisotropy existing between the rolling direction and the off-axis orientations. Fatigue cracks that traveled in a direction parallel to the elongated grains (cyclic loads applied at 90-degree orientation to foil rolling direction) had the most fatigue response (undesirable characteristic). The construction of the specimens with thin foil supported by a film backing contributed to high fatigue threshold.
文摘Ultra-low carbon(ULC),cold-rolled sheet steels for porcelain enameling containing alloys of titanium and boron are studied. The microstructure,mechanical properties,inclusions,and precipitates of the sheet steels are analyzed. The hydrogen permeation time of the sheet steels as-annealed and after skin-passed or cold-rolled at different reductions are measured. It is show n that the sheet steels possess different features of enameling properties in hydrogen permeability,fishscale resistance,and pinhole resistance.
文摘The influence of cold rolling reduction on microstructure and mechanical properties of the twinning induced plasticity(TWIP) steel with a chemical composition of Fe-20Mn-3Si-3Al-0.045 C has been investigated.Tensile tests were carried out to explore the mechanical properties of TWIP steel with different cold rolling reductions.The microstructures were observed by optical microscopy and transmission electron microscopy(TEM).The misorientation and the development of recrystallization texture in TWIP steel sheets were investigated by Electron Back Scatter Diffraction(EBSD) technique.The results indicated that the steel exhibited attractively mechanical properties when cold rolling reduction was about 10%.The tensile strength of the steel with a rolling reduction of 10%is higher than 900 MPa and the yield strength is about 800 MPa,while the elongation is above 35%.The microstructure is composed of austenitic matrix and deformation twins at room temperature,at the same time,a significant amount of deformation twins,stacking faults and dislocations are observed by TEM.TEM observations showed the presence of deformation twinning in the sample at low rolling reduction.As the strain increases the volume fraction of twins increases.Mechanical twins play a dominant role during deformation and result in excellent mechanical properties for the investigated steel.By TEM observation,the possible deformation mechanisms can be suggested as:with the increasing strain,formation of the twin will gradually play a more important role during deformation.The interaction between twins and dislocations enhances the strain hardening rate in the sample.Consequently,the necking is delayed and a good ductility is obtained.Twins were always observed in the region with high density of dislocation and faults,suggesting that the interaction among blocked dislocations and faults as well as deformation twins promote the increase in material strength.EBSD observation showed that the textures has evolved according to the following trend:the brass orientation {110}〈112〉and Goss orientation {110}〈001〉are dominant at every strain level,those intensities increase with increasing strain,while with the increase of the strain level,the change of S orientation {123}〈634〉was not obviously.
文摘The detection and classification of real-time surface defects play an important role in automotive sheet inspection and production. In this paper, an automatic surface inspection system (ASIS) based on signal processing in Baosteel NO. 4 cold-rolled plant is briefly presented. We demonstrate that the strip surface defect properties such as image, type, pitch, and position can be accurately calculated and classified by the automatic surface inspection system. In the manufacturing of the high-quality cold-rolled strips, it is necessary that the real-time surface defects can be detected and transferred by the automatic surface inspection system combined with annealing lines and recoiling lines.
基金This work is financially supported by the National Natural Science Foundation if China(No.50071031)
文摘SiC_w/Al composite was fabricated through a squeeze cast route and coldrolled to about 30 percent, 50 percent and 70 percent reduction In thickness, respectively. Thelength of whiskers in the composite before and after rolling was examined using SEM. Some of therolled composites were recrystallization annealed to remove the work hardening of matrix alloy. Thetensile strength of the rolled and annealed SiC_w/Al composites was examined and then associatedwith the change of the whisker length and the work hardening of matrix alloy. It was found that thetensile strength is a function of the degree of cold rolling. For the cold rolled composites, withthe increase in the degree of cold rolling, the tensile strength increases at first, and decreaseswhen the degree of cold rolling exceeds 50 percent. For the annealed ones, however; the tensilestrength decreases monotonously with the increase in rolling degree. The different changes intensile strength between the rolled and annealed composites could be attributed to the result of thecompetition between the work hardening of matrix resulting from the cold rolling and the worksoftening arising from the change of whisker length.
基金Funded by the National Natural Science Foundation o f China(51201154)the Natural Science Foundation of Shanxi Province(2014011015-1)
文摘TWIP steels with 70% cold-rolled reduction were heated at 500, 600, 700, 800, 900, 1000, and 1100 ℃. Then, the properties before and after heating were examined through tensile and hardness experiments. The microstructures were also analyzed by optical microscopy and transmission electron microscopy. The relationship between the properties and microstructure was examined as well. Finally, the evolution process of cold-rolled microstructures during heating was discussed in detail. Moreover, some conclusions can be drawn, and the heating evolution characteristics are described.
基金supported by the National Key Technologies R & D Program of China (No.2006BAE03A13)
文摘The formation mechanism of the cold-rolled strip shape with high tension was studied. An advanced method to calculate the allowable variation of strip transverse profiles was established by the strip buckling criterion, which can be more properly used in cold rolling. With this method, the aim allowable variation of the product strip transverse profile and the required transverse profile range of incoming strips can be reached. Besides, this method has been successfully applied in a domestic tandem cold mill, and the transverse profile range of incoming strips suggested with this method is more practicable and complete. Consequently, the good performance is acquired.