Cold-rolled advanced high-strength steel sheets have become the material of choice for the automotive industry because of their unique attributes of high strength and balanced mechanical properties.High-hydrogen gas j...Cold-rolled advanced high-strength steel sheets have become the material of choice for the automotive industry because of their unique attributes of high strength and balanced mechanical properties.High-hydrogen gas jet cooling and water quenching are the most commonly used ultrafast cooling technologies for producing martensite-containing high-strength steel sheets.The water quenching technology ensures the fastest industrial cooling rate of 1 000 K/s;therefore,it has the highest potential with respect to saving alloys.In this study,the water quenching of a C-Mn-containing steel sheet is simulated during continuous annealing to investigate the effect of water quenching and tempering parameters on its mechanical properties.The results reveal that at low quenching temperatures,the strength of the steel sheet decreases as the soaking temperature increases.However,at high quenching temperatures,a high soaking temperature corresponds to increased strength after quenching,regardless of whether the material was austenitized in the single austenite zone or the inter-critical zone.Therefore,a high quenching temperature always results in a high strength and a high yield ratio after quenching.Low-temperature overaging(tempering) considerably influences the yield strength and yield ratio,and the extent of this influence is correlated with the soaking temperature.展开更多
Cold-rolled martensitic steel sheets produced on continuous annealing lines with water quenching facility,have advantages of high strength and low alloying element contents.These are in good accordance with the trend ...Cold-rolled martensitic steel sheets produced on continuous annealing lines with water quenching facility,have advantages of high strength and low alloying element contents.These are in good accordance with the trend of light-weighting and fuel saving for automotive steel.In this article,a cold-rolled martensitic steel is studied to investigate the effect of annealing parameters on its mechanical properties.It is found that the quenching temperature and the slow cooling speed as well as the overageing temperature have significant influence on the strength of the experimental steel.The temperature zone at which the austenite decomposition is slow or has not started may be chosen as the quenching temperature to ensure the steel’s strength stability.The slow cooling speed also influences the steel’s strength greatly.A high cooling rate will lead to significantly higher strength.Tempering would decrease the steel’s tensile strength but would increase its yield strength.展开更多
Cold-rolled martensitic steel sheets are becoming widely applied in the automotive industry because of their ultra-high strength,which may result in satisfactory weight reduction. The grades of martensitic steel sheet...Cold-rolled martensitic steel sheets are becoming widely applied in the automotive industry because of their ultra-high strength,which may result in satisfactory weight reduction. The grades of martensitic steel sheets are classified based on their tensile strength,which ranges from 980 to 1 700 MPa. The main applications include a series of structural parts of uniform cross-section or simple shape,such as bumper beams,door beams and door sills,etc. The study and development of cold-rolled martensitic steel sheets date back to 2007 in Baosteel,and some grades became commercially available in 2009. By 2015,Baosteel had commercially supplied thousands of tons of these steel sheets with tensile strength up to 1 400 MPa. Currently,1 500 MPa martensitic steel sheet is commercially available and 1 700 MPa martensitic steel sheet has been successfully produced. The process technology and application guides of Basoteel 's cold-rolled martensitic steels are summarized and analyzed in order to assist ongoing research and ensure correct applications of these ultra-high strength steel sheets.展开更多
Ultra-low carbon(ULC),cold-rolled sheet steels for porcelain enameling containing alloys of titanium and boron are studied. The microstructure,mechanical properties,inclusions,and precipitates of the sheet steels ar...Ultra-low carbon(ULC),cold-rolled sheet steels for porcelain enameling containing alloys of titanium and boron are studied. The microstructure,mechanical properties,inclusions,and precipitates of the sheet steels are analyzed. The hydrogen permeation time of the sheet steels as-annealed and after skin-passed or cold-rolled at different reductions are measured. It is show n that the sheet steels possess different features of enameling properties in hydrogen permeability,fishscale resistance,and pinhole resistance.展开更多
Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurem...Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength.展开更多
The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)o...The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)of Cu/Mo/Cu clad sheets was established successfully.The results show that the deformation of Cu and Mo layers was gradually coherent with an increase in rolling reduction and temperature and excellent interface bonding was achieved under the condition of a large rolling reduction.The development of the microstructure and texture through the thickness of Cu and Mo layers was inhomogeneous.This phenomenon can be attributed to the friction between the roller and sheet surface and the uncoordinated deformation between Cu and Mo.The tensile strength of the clad sheets increased with increasing rolling reduction and the elongation was gradually decreased.The CTE of Cu/Mo/Cu clad sheets was related to the volume fraction of Mo.The finite element method can simulate the deformation and stress distribution during the thermal expansion process.The simulation result indicates that the terminal face of the clad sheets was sunken inward.展开更多
Multi-pass hot-rolling technique was used to fabricate W80Cu20 alloy,and its properties were characterized in this paper.Results show that the W-Cu alloy sheets with a thickness of 0.5 mm and a relative density of99.8...Multi-pass hot-rolling technique was used to fabricate W80Cu20 alloy,and its properties were characterized in this paper.Results show that the W-Cu alloy sheets with a thickness of 0.5 mm and a relative density of99.87%can be successfully made using this new technique at 800℃.In hot-rolling process,Cu phases are closely surrounded by W particles under the rolling stress to form a network microstructure,thus making significant increase in electrical and thermal conductivity up to53.00%and 24.44%,respectively.Transverse and longitudinal hardness of the W–Cu sheets significantly increase due to the enhanced densification and deformation strength.Similar to that of the raw materials,three fracture types were observed in the hot-rolled materials,i.e.,ductile fracture of Cu binding phases,trans-granular fracture of W phases,and W–W interfacial fracture.展开更多
The microstructure of surface peeling in finish rolled Cu-0.1Fe-0.03P sheetis analyzed by scanning electron microscope and energy dispersive spectroscope. Fe-rich areas ofdifferent contents are observed in the matrix....The microstructure of surface peeling in finish rolled Cu-0.1Fe-0.03P sheetis analyzed by scanning electron microscope and energy dispersive spectroscope. Fe-rich areas ofdifferent contents are observed in the matrix. The stress distributions and strain characteristicsat the interface between Cu matrix and Fe particle are studied by elastic-plastic finite elementplane strain model. Larger Fe particles and higher deforming extent of finish rolling are attributedto the intense stress gradient and significant non-homogeneity equivalent strain at the interfaceand accelerate surface peeling of Cu-0.1Fe-0.03P lead frame sheet.展开更多
The effects of variation of Mg content on microstructures, the tensile properties and the formability of Al-Mg-Si-Cu alloys for automotive body sheets were investigated by means of scan electron microscopy, optical me...The effects of variation of Mg content on microstructures, the tensile properties and the formability of Al-Mg-Si-Cu alloys for automotive body sheets were investigated by means of scan electron microscopy, optical metallographic analysis, tensile and Ericsson tests. The results show that for Al-Mg-Si-Cu aluminium alloys with excessive Si, with an increment of Mg content, the strength enhances, the specific elongation and Erisson values of alloys decrease, and the number of Mg2Si constituent increases and that of Al(MnFe)Si type constituents reduces. Al-Mg-Si-Cu aluminium alloys with excessive Si for automotive body sheets can present obviously the paint bake hardenability during the paint bake cycle (i.e. artificial aging at 170 ℃ for 30 min immediately after the solution treatment and quenching). Suitable Mg content should be controlled in the range of 0.8% and 1.2%(mass fraction).展开更多
Many advanced technologies have been applied in developing the automatic measuring device for testing transverse thickness difference of cold-rolling steel sheet,such as the technologies of automatic control,sensor me...Many advanced technologies have been applied in developing the automatic measuring device for testing transverse thickness difference of cold-rolling steel sheet,such as the technologies of automatic control,sensor measurement,marking identification,photographic location,computer application and information transmission.This measuring device can measure the transverse thickness difference of the steel plate accurately and quickly,with a high detection level of automation.It is an effective detection equipment for transverse thickness control of steel plate.Horizontal width of steel plate measuring 0.8-1.4 m, horizontal measurement point positioning accuracy±0.02 mm,thickness range 0.2-2.0 mm, measurement accuracy within±1μm.展开更多
In this paper, the orientation of grains which adjacent to a developed opening crack was investigated by EBSD. A definition of θ has been came up with which represents the angle between the principal stress plane and...In this paper, the orientation of grains which adjacent to a developed opening crack was investigated by EBSD. A definition of θ has been came up with which represents the angle between the principal stress plane and each plane of the grains. Smaller θ means easier to crack. It gave a good explanation of the crack propagation throughout the grains. It also revealed that propagation path is along with the plane. This finding will give a prediction of tear properties and help us understanding the cracking mechanism and the behavior of tearing.展开更多
通过拉伸和埃里克森实验以及扫描电镜/能谱、透射电镜和金相分析,研究Mn的质量分数对Al Mg Si Cu铝合金汽车板显微组织、力学性能和成形性的影响·研究表明,随Mn质量分数增加,Al Mg Si Cu汽车板铝合金不可溶结晶相及弥散相粒子数量...通过拉伸和埃里克森实验以及扫描电镜/能谱、透射电镜和金相分析,研究Mn的质量分数对Al Mg Si Cu铝合金汽车板显微组织、力学性能和成形性的影响·研究表明,随Mn质量分数增加,Al Mg Si Cu汽车板铝合金不可溶结晶相及弥散相粒子数量均增加,不可溶结晶相使合金组织纤维化对板材冲压成形性不利,弥散相粒子阻碍再结晶晶粒长大;提高Mn的质量分数,Al Mg Si Cu汽车板铝合金的强度增加,但延伸率和冲压成形性降低·展开更多
文摘Cold-rolled advanced high-strength steel sheets have become the material of choice for the automotive industry because of their unique attributes of high strength and balanced mechanical properties.High-hydrogen gas jet cooling and water quenching are the most commonly used ultrafast cooling technologies for producing martensite-containing high-strength steel sheets.The water quenching technology ensures the fastest industrial cooling rate of 1 000 K/s;therefore,it has the highest potential with respect to saving alloys.In this study,the water quenching of a C-Mn-containing steel sheet is simulated during continuous annealing to investigate the effect of water quenching and tempering parameters on its mechanical properties.The results reveal that at low quenching temperatures,the strength of the steel sheet decreases as the soaking temperature increases.However,at high quenching temperatures,a high soaking temperature corresponds to increased strength after quenching,regardless of whether the material was austenitized in the single austenite zone or the inter-critical zone.Therefore,a high quenching temperature always results in a high strength and a high yield ratio after quenching.Low-temperature overaging(tempering) considerably influences the yield strength and yield ratio,and the extent of this influence is correlated with the soaking temperature.
文摘Cold-rolled martensitic steel sheets produced on continuous annealing lines with water quenching facility,have advantages of high strength and low alloying element contents.These are in good accordance with the trend of light-weighting and fuel saving for automotive steel.In this article,a cold-rolled martensitic steel is studied to investigate the effect of annealing parameters on its mechanical properties.It is found that the quenching temperature and the slow cooling speed as well as the overageing temperature have significant influence on the strength of the experimental steel.The temperature zone at which the austenite decomposition is slow or has not started may be chosen as the quenching temperature to ensure the steel’s strength stability.The slow cooling speed also influences the steel’s strength greatly.A high cooling rate will lead to significantly higher strength.Tempering would decrease the steel’s tensile strength but would increase its yield strength.
文摘Cold-rolled martensitic steel sheets are becoming widely applied in the automotive industry because of their ultra-high strength,which may result in satisfactory weight reduction. The grades of martensitic steel sheets are classified based on their tensile strength,which ranges from 980 to 1 700 MPa. The main applications include a series of structural parts of uniform cross-section or simple shape,such as bumper beams,door beams and door sills,etc. The study and development of cold-rolled martensitic steel sheets date back to 2007 in Baosteel,and some grades became commercially available in 2009. By 2015,Baosteel had commercially supplied thousands of tons of these steel sheets with tensile strength up to 1 400 MPa. Currently,1 500 MPa martensitic steel sheet is commercially available and 1 700 MPa martensitic steel sheet has been successfully produced. The process technology and application guides of Basoteel 's cold-rolled martensitic steels are summarized and analyzed in order to assist ongoing research and ensure correct applications of these ultra-high strength steel sheets.
文摘Ultra-low carbon(ULC),cold-rolled sheet steels for porcelain enameling containing alloys of titanium and boron are studied. The microstructure,mechanical properties,inclusions,and precipitates of the sheet steels are analyzed. The hydrogen permeation time of the sheet steels as-annealed and after skin-passed or cold-rolled at different reductions are measured. It is show n that the sheet steels possess different features of enameling properties in hydrogen permeability,fishscale resistance,and pinhole resistance.
基金Project (50874056) supported by the National Natural Science Foundation of China
文摘Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength.
基金financial supports from the National Natural Science Foundation of China (No.51421001)the Fundamental Research Funds for the Central Universities,China (Nos.2019CDQY CL001,2019CDCGCL204,2020CDJDPT001)the Research Project of State Key Laboratory of Vehicle NVH and Safety Technology,China (No.NVHSKL-201706)。
文摘The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)of Cu/Mo/Cu clad sheets was established successfully.The results show that the deformation of Cu and Mo layers was gradually coherent with an increase in rolling reduction and temperature and excellent interface bonding was achieved under the condition of a large rolling reduction.The development of the microstructure and texture through the thickness of Cu and Mo layers was inhomogeneous.This phenomenon can be attributed to the friction between the roller and sheet surface and the uncoordinated deformation between Cu and Mo.The tensile strength of the clad sheets increased with increasing rolling reduction and the elongation was gradually decreased.The CTE of Cu/Mo/Cu clad sheets was related to the volume fraction of Mo.The finite element method can simulate the deformation and stress distribution during the thermal expansion process.The simulation result indicates that the terminal face of the clad sheets was sunken inward.
基金supported by the National Natural Science Foundation of China (No. 50834003)
文摘Multi-pass hot-rolling technique was used to fabricate W80Cu20 alloy,and its properties were characterized in this paper.Results show that the W-Cu alloy sheets with a thickness of 0.5 mm and a relative density of99.87%can be successfully made using this new technique at 800℃.In hot-rolling process,Cu phases are closely surrounded by W particles under the rolling stress to form a network microstructure,thus making significant increase in electrical and thermal conductivity up to53.00%and 24.44%,respectively.Transverse and longitudinal hardness of the W–Cu sheets significantly increase due to the enhanced densification and deformation strength.Similar to that of the raw materials,three fracture types were observed in the hot-rolled materials,i.e.,ductile fracture of Cu binding phases,trans-granular fracture of W phases,and W–W interfacial fracture.
基金This project is supported by 863 Program of China (N0.2002AA331112)Doctoral Foundation of Northwestern Polytechnical University.
文摘The microstructure of surface peeling in finish rolled Cu-0.1Fe-0.03P sheetis analyzed by scanning electron microscope and energy dispersive spectroscope. Fe-rich areas ofdifferent contents are observed in the matrix. The stress distributions and strain characteristicsat the interface between Cu matrix and Fe particle are studied by elastic-plastic finite elementplane strain model. Larger Fe particles and higher deforming extent of finish rolling are attributedto the intense stress gradient and significant non-homogeneity equivalent strain at the interfaceand accelerate surface peeling of Cu-0.1Fe-0.03P lead frame sheet.
基金Project(2002AA331050) supported by Hi tech Research and Development Program of China Project(0208) supportedby Science and Technology of Ministry of Education of China
文摘The effects of variation of Mg content on microstructures, the tensile properties and the formability of Al-Mg-Si-Cu alloys for automotive body sheets were investigated by means of scan electron microscopy, optical metallographic analysis, tensile and Ericsson tests. The results show that for Al-Mg-Si-Cu aluminium alloys with excessive Si, with an increment of Mg content, the strength enhances, the specific elongation and Erisson values of alloys decrease, and the number of Mg2Si constituent increases and that of Al(MnFe)Si type constituents reduces. Al-Mg-Si-Cu aluminium alloys with excessive Si for automotive body sheets can present obviously the paint bake hardenability during the paint bake cycle (i.e. artificial aging at 170 ℃ for 30 min immediately after the solution treatment and quenching). Suitable Mg content should be controlled in the range of 0.8% and 1.2%(mass fraction).
文摘Many advanced technologies have been applied in developing the automatic measuring device for testing transverse thickness difference of cold-rolling steel sheet,such as the technologies of automatic control,sensor measurement,marking identification,photographic location,computer application and information transmission.This measuring device can measure the transverse thickness difference of the steel plate accurately and quickly,with a high detection level of automation.It is an effective detection equipment for transverse thickness control of steel plate.Horizontal width of steel plate measuring 0.8-1.4 m, horizontal measurement point positioning accuracy±0.02 mm,thickness range 0.2-2.0 mm, measurement accuracy within±1μm.
文摘In this paper, the orientation of grains which adjacent to a developed opening crack was investigated by EBSD. A definition of θ has been came up with which represents the angle between the principal stress plane and each plane of the grains. Smaller θ means easier to crack. It gave a good explanation of the crack propagation throughout the grains. It also revealed that propagation path is along with the plane. This finding will give a prediction of tear properties and help us understanding the cracking mechanism and the behavior of tearing.
文摘通过拉伸和埃里克森实验以及扫描电镜/能谱、透射电镜和金相分析,研究Mn的质量分数对Al Mg Si Cu铝合金汽车板显微组织、力学性能和成形性的影响·研究表明,随Mn质量分数增加,Al Mg Si Cu汽车板铝合金不可溶结晶相及弥散相粒子数量均增加,不可溶结晶相使合金组织纤维化对板材冲压成形性不利,弥散相粒子阻碍再结晶晶粒长大;提高Mn的质量分数,Al Mg Si Cu汽车板铝合金的强度增加,但延伸率和冲压成形性降低·