Objective: To investigate the effect of nano hydroxyapatite/collagen (nHA/collagen) composite as a graft extender and enhancer when combined with recombinant human bone morphogenetic protein 2 (rhBMP 2) on lumbar inte...Objective: To investigate the effect of nano hydroxyapatite/collagen (nHA/collagen) composite as a graft extender and enhancer when combined with recombinant human bone morphogenetic protein 2 (rhBMP 2) on lumbar intertransverse fusion in rabbits. Methods: Sixty four adult female New Zealand white rabbits, aged 1 year and weighing 3.5 4.5 kg, underwent similar posterolateral intertransverse process arthrodesis and were randomly divided into 4 groups based on different grafts: autogenous cancellous bone alone (ACB group), nHA/collagen alone (HAC group), half autogenous cancellous bone and half nHA/collagen (ACB+HAC group) and nHA/collagen combined with rhBMP 2 (HAC+BMP group). The fusion masses were analyzed by manual palpation, radiography, biomechanical testing and histological examination. Results: Fusion was observed in 4 cases in the 6th week and in 5 cases in the 10th week after surgery in ACB group. No case showed fusion in HAC group. In ACB+HAC group, there was fusion in 3 cases in the 6th week and in 4 cases in the 10th week after surgery. In HAC+BMP group, fusion in 1 case was found in the 4th week, in 5 cases in the 6th week and in 6 cases in the 10th week after surgery. It suggested that ACB, ACB+HAC and HAC+BMP groups showed similar fusion ratio and mechanical strength in the 6th and 10th week after surgery. According to the microstructure analysis of the samples, nHA/collagen had no negative effect when implanted together with ilium autograft. In HAC+BMP group, new bone like tissue was observed in the 2nd week postoperatively, and nearly all of the implanted composites were replaced by mature bone matrix and new bones in 10th week postoperatively. Conclusions: The nHA/collagen, especially combined with rhBMP 2, is a promising bone substitute, for it has quick biodegradation, fine bone bending ability, and high osteoconductivity on posterolateral spinal fusion in rabbits.展开更多
This paper aims to prepare a PVA-GAG-COL composite with polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL) by the method of freeze drying and to investigate the feasibility as a tissue engineering sca...This paper aims to prepare a PVA-GAG-COL composite with polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL) by the method of freeze drying and to investigate the feasibility as a tissue engineering scaffold for tissue or organ repairing. In this study, SEM was used to observe the morphology. Biocompatibility was tested by cell culture with the extracted fluid of composite materials. Different proportional scaffolds could be obtained with different concentrations and alcoholysis degree of PVA. Different proportional scaffolds also had different porous structures. SEM proved that large amount of porous structure could be formed. Biocompatibility test showed that the extracted fluid of composite materials was nontoxic, which could promote the adhesion and proliferation of the fibroblast. Fibroblast could grow on the scaffold normally.A porous scaffold for tissue engineering with high water content can be fabricated by PVA, GAG and COL, which has excellent cell biocompatibility. The porous structure shows potential in tissue engineering and cell culture.展开更多
文摘Objective: To investigate the effect of nano hydroxyapatite/collagen (nHA/collagen) composite as a graft extender and enhancer when combined with recombinant human bone morphogenetic protein 2 (rhBMP 2) on lumbar intertransverse fusion in rabbits. Methods: Sixty four adult female New Zealand white rabbits, aged 1 year and weighing 3.5 4.5 kg, underwent similar posterolateral intertransverse process arthrodesis and were randomly divided into 4 groups based on different grafts: autogenous cancellous bone alone (ACB group), nHA/collagen alone (HAC group), half autogenous cancellous bone and half nHA/collagen (ACB+HAC group) and nHA/collagen combined with rhBMP 2 (HAC+BMP group). The fusion masses were analyzed by manual palpation, radiography, biomechanical testing and histological examination. Results: Fusion was observed in 4 cases in the 6th week and in 5 cases in the 10th week after surgery in ACB group. No case showed fusion in HAC group. In ACB+HAC group, there was fusion in 3 cases in the 6th week and in 4 cases in the 10th week after surgery. In HAC+BMP group, fusion in 1 case was found in the 4th week, in 5 cases in the 6th week and in 6 cases in the 10th week after surgery. It suggested that ACB, ACB+HAC and HAC+BMP groups showed similar fusion ratio and mechanical strength in the 6th and 10th week after surgery. According to the microstructure analysis of the samples, nHA/collagen had no negative effect when implanted together with ilium autograft. In HAC+BMP group, new bone like tissue was observed in the 2nd week postoperatively, and nearly all of the implanted composites were replaced by mature bone matrix and new bones in 10th week postoperatively. Conclusions: The nHA/collagen, especially combined with rhBMP 2, is a promising bone substitute, for it has quick biodegradation, fine bone bending ability, and high osteoconductivity on posterolateral spinal fusion in rabbits.
基金National High-tech Reasearch and Development Program of China(863 Program)grant number:2077AA09Z436+1 种基金Guangdong Project '211'grant number:50621030
文摘This paper aims to prepare a PVA-GAG-COL composite with polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL) by the method of freeze drying and to investigate the feasibility as a tissue engineering scaffold for tissue or organ repairing. In this study, SEM was used to observe the morphology. Biocompatibility was tested by cell culture with the extracted fluid of composite materials. Different proportional scaffolds could be obtained with different concentrations and alcoholysis degree of PVA. Different proportional scaffolds also had different porous structures. SEM proved that large amount of porous structure could be formed. Biocompatibility test showed that the extracted fluid of composite materials was nontoxic, which could promote the adhesion and proliferation of the fibroblast. Fibroblast could grow on the scaffold normally.A porous scaffold for tissue engineering with high water content can be fabricated by PVA, GAG and COL, which has excellent cell biocompatibility. The porous structure shows potential in tissue engineering and cell culture.