In recent years,the number of patients with orthopedic diseases such as cervical spondylosis has increased,resulting in an increase in the demand for orthopedic surgery.However,thermal necrosis and bone cracks caused ...In recent years,the number of patients with orthopedic diseases such as cervical spondylosis has increased,resulting in an increase in the demand for orthopedic surgery.However,thermal necrosis and bone cracks caused by surgery severely restrict the development and progression of orthopedic surgery.For the material of cutting tool processing bone in bone surgery of drilling high temperature lead to cell death,easy to produce the problem such as crack cause secondary damage effects to restore,in this paper,a bionic drill was designed based on the micro-structure of the dung beetle's head and back.The microstructure configuration parameters were optimized by numerical analysis,and making use of the optical fiber laser marking machine preparation of bionic bit;through drilling test,the mathematical model of drilling temperature and crack generation based on micro-structure characteristic parameters was established by infrared thermal imaging technology and acoustic emission signal technology,and the cooling mechanism and crack suppression strategy were studied.The experimental results show that when the speed is 60 m/min,the cooling effects of the bionic bit T1 and T2 are 15.31%and 19.78%,respectively,and both kinds of bits show obvious crack suppression effect.The research in this paper provides a new idea for precision and efficient machining of bone materials,and the research results will help to improve the design and manufacturing technology and theoretical research level in the field of bone drilling tools.展开更多
To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introdu...To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy.展开更多
Compared with non-degradable materials,biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects,and have attracted extensive attention from researchers.In the treatment of...Compared with non-degradable materials,biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects,and have attracted extensive attention from researchers.In the treatment of bone defects,scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role,which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue.Traditional biodegradable materials include polymers,ceramics and metals,which have been used in bone defect repairing for many years.Although these materials have more or fewer shortcomings,they are still the cornerstone of our development of a new generation of degradable materials.With the rapid development of modern science and technology,in the 21 st century,more and more kinds of new biodegradable materials emerge in endlessly,such as new intelligent micro-nano materials and cell-based products.At the same time,there are many new fabrication technologies of improving biodegradable materials,such as modular fabrication,3 D and 4 D printing,interface reinforcement and nanotechnology.This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing,especially the newly emerging materials and their fabrication technology in recent years,and look forward to the future research direction,hoping to provide researchers in the field with some inspiration and reference.展开更多
Presently, several different graft materials are employed in regenerative or corrective bone surgery. However current misconceptions about these biomaterials, their use and risks may compromise their correct applicati...Presently, several different graft materials are employed in regenerative or corrective bone surgery. However current misconceptions about these biomaterials, their use and risks may compromise their correct application and development. To unveil these misconceptions, this work briefly reviewed concepts about bone remodeling, grafts classification and manufacturing processes, with a special focus on calcium phosphate materials as an example of a current employed biomaterial. Thus a search on the last decade was performed in Medline, LILACS, Scielo and other scientific electronic libraries using as keywords biomaterials, bone remodeling, regeneration, biocompatible materials, hydroxyapatite and therapeutic risks. Our search showed not only an accelerated biotechnological development that brought significant advances to biomaterials use on bone remodeling treatments but also several therapeutic risks that should not be ignored. The biomaterials specificity and limitations to clinical application point to the current need for developing safer products with better interactions with the biological microenvironments.展开更多
Bone regeneration is a critical area in regenerative medicine,particularly in orthopedics,demanding effective biomedical materials for treating bone defects.45S5 bioactive glass(45S5 BG)is a promising material because...Bone regeneration is a critical area in regenerative medicine,particularly in orthopedics,demanding effective biomedical materials for treating bone defects.45S5 bioactive glass(45S5 BG)is a promising material because of its osteoconductive and bioactive properties.As research in this field continues to advance,keeping up-to-date on the latest and most successful applications of this material is imperative.To achieve this,we conducted a comprehensive search on Pub-Med/MEDLINE,focusing on English articles published in the last decade.Our search used the keywords“bioglass 45S5 AND bone defect”in combination.We found 27 articles,and after applying the inclusion criteria,we selected 15 studies for detailed examination.Most of these studies compared 45S5 BG with other cement or scaffold materials.These comparisons demonstrate that the addition of various composites enhances cellular biocompatibility,as evidenced by the cells and their osteogenic potential.Moreover,the use of 45S5 BG is enhanced by its antimicrobial properties,opening avenues for additional investigations and applications of this biomaterial.展开更多
Objective:To prepare a bone repair material with certain mechanical strength and biological activity,this paper used calcium sulfate hemihydrate(CSH)powder compounded with calcium hydroxide(Ca(OH)2)powder to prepare a...Objective:To prepare a bone repair material with certain mechanical strength and biological activity,this paper used calcium sulfate hemihydrate(CSH)powder compounded with calcium hydroxide(Ca(OH)2)powder to prepare a bone repair scaffold material for physicochemical property characterization and testing.Methods:The physical and chemical properties and characterization of the dried and cured bone repair materials were determined by Fourier infrared spectroscopy(FT-IR),X-ray diffraction(XRD),and scanning electron microscopy;Universal material testing machine to determine the mechanical and mechanical strength of composite materials.Results:XRD showed that the structure of the composite material phase at 5%concentration was calcium sulfate hemihydrate and calcium hydroxide after hydration.The FT-IR and XRD analyses were consistent.Scanning electron microscopy(SEM)results showed that calcium hydroxide was uniformly dispersed in the hemihydrate calcium sulfate material.0%,1%,5%,and 10%specimen groups had compressive strengths of 3.86±3.1,5.27±1.28,8.22±0.96,and 14.4±3.28 MPa.10%addition of calcium hydroxide significantly improved the mechanical strength of the composites,but also reduced the the porosity of the material.Conclusion:With the addition of calcium hydroxide,the CSH-Ca(OH)2 composite was improved in terms of mechanical material and is expected to be a new type of bone repair material.展开更多
Objective:To study the effects of absorbable materials in non-weight-bearing bone fractures of extremities.Methods:After 66 patients with nonweight-bearing bone fractures of extremities were selected,absorbable materi...Objective:To study the effects of absorbable materials in non-weight-bearing bone fractures of extremities.Methods:After 66 patients with nonweight-bearing bone fractures of extremities were selected,absorbable materials were used in the observation group and metal materials were used in the control group.Results:After treatment,the bone healing in the observation group was significantly improved(P<0.05).Conclusion:the application of absorbable materials in non-weight-bearing bone fractures of extremities is effective.展开更多
As a part of regenerative medicine, biomaterials are largely used in this field of nanotechnology and tissue engineering research. We have recently developed a new scaffold using electrospun nanofibers of Poly (ε-cap...As a part of regenerative medicine, biomaterials are largely used in this field of nanotechnology and tissue engineering research. We have recently developed a new scaffold using electrospun nanofibers of Poly (ε-caprolactone), PCL which is able to mimic the collagen extracellular matrix of cells. The aim of this study was to engineer a biological and implantable structure leading the regeneration of the tooth-bone unit. For this aim, we have cultured mouse osteoblasts embedded in a collagen gel on the nanofibrous membrane and coupled this structure with an embryonic dental germ before implantation. To follow bone and tooth regeneration, we have performed RT-PCR, histology and immunofluorescence analysis. We showed here that this leaving implantable structure represents an accurate strategy for bone-tooth unit regeneration. We report here the first demonstration of bone-tooth unit regeneration by using a strategy based on a synthetic nanostructured membrane. This electrospun membrane is manufactured by using an FDA approved polymer, PCL and functionalized with osteoblasts before incorporation of the tooth germs at ED14 (the first lower molars) to generate bone-tooth unit in vivo after implantation in mice. Our technology represents an excellent platform on which other sophisticated products could be based.展开更多
A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n cop...A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.展开更多
AIM:To analyze constructive and biomechanical properties of different quality ratio material impregnated decalcified bone matrix (DBM) with bone cement (BC).M ETHODS:The DBM particles and the materials impregnated 0 m...AIM:To analyze constructive and biomechanical properties of different quality ratio material impregnated decalcified bone matrix (DBM) with bone cement (BC).M ETHODS:The DBM particles and the materials impregnated 0 mg/g, 300 mg/g and 400 mg/g mass ratio DBM particles with BC were made according to the methods of Uris t et al.The compound material constructions were observed by scanning electron m icroscope and the biomechanical properties were measured by Instron mechanics te sting-machine.RESULTS:The DBM particles with irregular gaps existing within int erspace were connected with BC by the multipoint mode in the compound material. The ultimate compressive strength were 0 mg/g DBM in (59.3±2.2) MPa, 300 mg/g i n (27.1±1.8) MPa, 400 mg/g in (19.3±1.6) MPa.The ultimate bending strength wer e 0 mg/g in (54.3±3.7) MPa, 300 mg/g in (18.5±1.1) MPa, 400 mg/g in (13.3±1.4 ) MPa.CONCLUSION:The materials of DBM impregnated with BC had perfect plastic pr operty with much more irregular gaps existing within interspace.The materials co uld provide abundant biomechanical support.展开更多
Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s ...Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.展开更多
Purpose: To investigate the periapical tissue response after root end filling with intermediate restorative material (IRM) and filling of the root-end resection bone defects with autogenous bone or a bone graft substi...Purpose: To investigate the periapical tissue response after root end filling with intermediate restorative material (IRM) and filling of the root-end resection bone defects with autogenous bone or a bone graft substitute in comparison to empty controls. Materials and Methods: Vital roots of the second, third and fourth mandibular premolars in six healthy mongrel dogs were apectomized. The root canals were prepared and sealed with IRM following a standardized surgical procedure. The resection bone defects were either filled with autogenous bone (PB) or one of the bone graft substitutes;CERAMENTTM|BONE VOID FILLER, ChronOS?, TigranTM PTG, Easygraft? CLASSIC or left empty. After 120 days the animals were sacrificed and the specimens were analyzed radiologically and histologically. Kruskal-Wallis and Mann-Whitney tests were performed for statistical evaluation. Results: 34 sections were analyzed histologically. The evaluation revealed a variation in the outcome amongst the tested options, regarding reestablishment of the periapical bone healing and inflammatory infiltration in the sections. According to the tested variables, there was no statistical significant difference between the materials when comparing all groups as a whole. When comparing individual materials to each other there was statistical differences among some of the tested materials. Conclusion: The healing outcome after periapical surgery of a five-wall resection defect could not be increased by infill with autogenous bone or bone graft substitutes. The most important factor for the healing outcome in periapical surgery is the quality of the root-end sealing. The healing outcome after some of the tested bone substitutes, might be improved by longer healing time.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.51975496)National Key Research and Development Program (Grant No.2019YFB1704800)+2 种基金Hunan Provincial Innovative Province Construction Special Project of China (Grant No.2020GK2083)Fundamental Research Funds for the Central Universities of China (Grant No.20720200068)Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology。
文摘In recent years,the number of patients with orthopedic diseases such as cervical spondylosis has increased,resulting in an increase in the demand for orthopedic surgery.However,thermal necrosis and bone cracks caused by surgery severely restrict the development and progression of orthopedic surgery.For the material of cutting tool processing bone in bone surgery of drilling high temperature lead to cell death,easy to produce the problem such as crack cause secondary damage effects to restore,in this paper,a bionic drill was designed based on the micro-structure of the dung beetle's head and back.The microstructure configuration parameters were optimized by numerical analysis,and making use of the optical fiber laser marking machine preparation of bionic bit;through drilling test,the mathematical model of drilling temperature and crack generation based on micro-structure characteristic parameters was established by infrared thermal imaging technology and acoustic emission signal technology,and the cooling mechanism and crack suppression strategy were studied.The experimental results show that when the speed is 60 m/min,the cooling effects of the bionic bit T1 and T2 are 15.31%and 19.78%,respectively,and both kinds of bits show obvious crack suppression effect.The research in this paper provides a new idea for precision and efficient machining of bone materials,and the research results will help to improve the design and manufacturing technology and theoretical research level in the field of bone drilling tools.
基金Supported by National Natural Science Foundation of China (Grant Nos.52005199 and 42241149)Shenzhen Fundamental Research Program (Grant Nos.JCYJ20200109150425085 and JCYJ20220818102601004)+2 种基金Shenzhen Science and Technology Program (Grant Nos.JSGG20201103100001004 and JSGG20220831105800001)Research Development Program of China (Grant No.2022YFB4602502)Knowledge Innovation Program of Wuhan-Basic Research (Grant No.2022010801010203)。
文摘To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy.
基金supported by grants from the National Natural Science Foundation of China(11772226,81871777 and 81572154)the Tianjin Science and Technology Plan Project(18PTLCSY00070,16ZXZNGX00130)grants awarded to Xiao-Song Gu by the National Natural Science Foundation of China(31730031 and L1924064)。
文摘Compared with non-degradable materials,biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects,and have attracted extensive attention from researchers.In the treatment of bone defects,scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role,which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue.Traditional biodegradable materials include polymers,ceramics and metals,which have been used in bone defect repairing for many years.Although these materials have more or fewer shortcomings,they are still the cornerstone of our development of a new generation of degradable materials.With the rapid development of modern science and technology,in the 21 st century,more and more kinds of new biodegradable materials emerge in endlessly,such as new intelligent micro-nano materials and cell-based products.At the same time,there are many new fabrication technologies of improving biodegradable materials,such as modular fabrication,3 D and 4 D printing,interface reinforcement and nanotechnology.This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing,especially the newly emerging materials and their fabrication technology in recent years,and look forward to the future research direction,hoping to provide researchers in the field with some inspiration and reference.
基金We thank the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico(CNPq)Coordenacao de Aperfeicoamento de Pessoal Docente(CAPES-Edital Nanobiotecnologia 2008) Fundacao de AmparoaPesquisa do Estado do Rio de Janeiro(FAPERJ)for the financial support and fellowships.
文摘Presently, several different graft materials are employed in regenerative or corrective bone surgery. However current misconceptions about these biomaterials, their use and risks may compromise their correct application and development. To unveil these misconceptions, this work briefly reviewed concepts about bone remodeling, grafts classification and manufacturing processes, with a special focus on calcium phosphate materials as an example of a current employed biomaterial. Thus a search on the last decade was performed in Medline, LILACS, Scielo and other scientific electronic libraries using as keywords biomaterials, bone remodeling, regeneration, biocompatible materials, hydroxyapatite and therapeutic risks. Our search showed not only an accelerated biotechnological development that brought significant advances to biomaterials use on bone remodeling treatments but also several therapeutic risks that should not be ignored. The biomaterials specificity and limitations to clinical application point to the current need for developing safer products with better interactions with the biological microenvironments.
文摘Bone regeneration is a critical area in regenerative medicine,particularly in orthopedics,demanding effective biomedical materials for treating bone defects.45S5 bioactive glass(45S5 BG)is a promising material because of its osteoconductive and bioactive properties.As research in this field continues to advance,keeping up-to-date on the latest and most successful applications of this material is imperative.To achieve this,we conducted a comprehensive search on Pub-Med/MEDLINE,focusing on English articles published in the last decade.Our search used the keywords“bioglass 45S5 AND bone defect”in combination.We found 27 articles,and after applying the inclusion criteria,we selected 15 studies for detailed examination.Most of these studies compared 45S5 BG with other cement or scaffold materials.These comparisons demonstrate that the addition of various composites enhances cellular biocompatibility,as evidenced by the cells and their osteogenic potential.Moreover,the use of 45S5 BG is enhanced by its antimicrobial properties,opening avenues for additional investigations and applications of this biomaterial.
基金National Natural Science Foundation of China(No.82060347)Postgraduate innovation research project of Hainan Medical College(No.HYYS2020-38)。
文摘Objective:To prepare a bone repair material with certain mechanical strength and biological activity,this paper used calcium sulfate hemihydrate(CSH)powder compounded with calcium hydroxide(Ca(OH)2)powder to prepare a bone repair scaffold material for physicochemical property characterization and testing.Methods:The physical and chemical properties and characterization of the dried and cured bone repair materials were determined by Fourier infrared spectroscopy(FT-IR),X-ray diffraction(XRD),and scanning electron microscopy;Universal material testing machine to determine the mechanical and mechanical strength of composite materials.Results:XRD showed that the structure of the composite material phase at 5%concentration was calcium sulfate hemihydrate and calcium hydroxide after hydration.The FT-IR and XRD analyses were consistent.Scanning electron microscopy(SEM)results showed that calcium hydroxide was uniformly dispersed in the hemihydrate calcium sulfate material.0%,1%,5%,and 10%specimen groups had compressive strengths of 3.86±3.1,5.27±1.28,8.22±0.96,and 14.4±3.28 MPa.10%addition of calcium hydroxide significantly improved the mechanical strength of the composites,but also reduced the the porosity of the material.Conclusion:With the addition of calcium hydroxide,the CSH-Ca(OH)2 composite was improved in terms of mechanical material and is expected to be a new type of bone repair material.
文摘Objective:To study the effects of absorbable materials in non-weight-bearing bone fractures of extremities.Methods:After 66 patients with nonweight-bearing bone fractures of extremities were selected,absorbable materials were used in the observation group and metal materials were used in the control group.Results:After treatment,the bone healing in the observation group was significantly improved(P<0.05).Conclusion:the application of absorbable materials in non-weight-bearing bone fractures of extremities is effective.
文摘As a part of regenerative medicine, biomaterials are largely used in this field of nanotechnology and tissue engineering research. We have recently developed a new scaffold using electrospun nanofibers of Poly (ε-caprolactone), PCL which is able to mimic the collagen extracellular matrix of cells. The aim of this study was to engineer a biological and implantable structure leading the regeneration of the tooth-bone unit. For this aim, we have cultured mouse osteoblasts embedded in a collagen gel on the nanofibrous membrane and coupled this structure with an embryonic dental germ before implantation. To follow bone and tooth regeneration, we have performed RT-PCR, histology and immunofluorescence analysis. We showed here that this leaving implantable structure represents an accurate strategy for bone-tooth unit regeneration. We report here the first demonstration of bone-tooth unit regeneration by using a strategy based on a synthetic nanostructured membrane. This electrospun membrane is manufactured by using an FDA approved polymer, PCL and functionalized with osteoblasts before incorporation of the tooth germs at ED14 (the first lower molars) to generate bone-tooth unit in vivo after implantation in mice. Our technology represents an excellent platform on which other sophisticated products could be based.
文摘A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.
文摘AIM:To analyze constructive and biomechanical properties of different quality ratio material impregnated decalcified bone matrix (DBM) with bone cement (BC).M ETHODS:The DBM particles and the materials impregnated 0 mg/g, 300 mg/g and 400 mg/g mass ratio DBM particles with BC were made according to the methods of Uris t et al.The compound material constructions were observed by scanning electron m icroscope and the biomechanical properties were measured by Instron mechanics te sting-machine.RESULTS:The DBM particles with irregular gaps existing within int erspace were connected with BC by the multipoint mode in the compound material. The ultimate compressive strength were 0 mg/g DBM in (59.3±2.2) MPa, 300 mg/g i n (27.1±1.8) MPa, 400 mg/g in (19.3±1.6) MPa.The ultimate bending strength wer e 0 mg/g in (54.3±3.7) MPa, 300 mg/g in (18.5±1.1) MPa, 400 mg/g in (13.3±1.4 ) MPa.CONCLUSION:The materials of DBM impregnated with BC had perfect plastic pr operty with much more irregular gaps existing within interspace.The materials co uld provide abundant biomechanical support.
基金supported by grants from the National Natural Science Foundation of China(52205363)Fundamental Research Funds for the Central Universities(2019kfyRCPY044 and 2021GCRC002)+3 种基金Program for HUST Academic Frontier Youth Team(2018QYTD04)Program for Innovative Research Team of the Ministry of Education(IRT1244)Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the Guangdong Provincial Department of Science and Technology(Key-Area Research and Development Program of Guangdong Province)under the Grant 2020B090923002。
文摘Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.
文摘Purpose: To investigate the periapical tissue response after root end filling with intermediate restorative material (IRM) and filling of the root-end resection bone defects with autogenous bone or a bone graft substitute in comparison to empty controls. Materials and Methods: Vital roots of the second, third and fourth mandibular premolars in six healthy mongrel dogs were apectomized. The root canals were prepared and sealed with IRM following a standardized surgical procedure. The resection bone defects were either filled with autogenous bone (PB) or one of the bone graft substitutes;CERAMENTTM|BONE VOID FILLER, ChronOS?, TigranTM PTG, Easygraft? CLASSIC or left empty. After 120 days the animals were sacrificed and the specimens were analyzed radiologically and histologically. Kruskal-Wallis and Mann-Whitney tests were performed for statistical evaluation. Results: 34 sections were analyzed histologically. The evaluation revealed a variation in the outcome amongst the tested options, regarding reestablishment of the periapical bone healing and inflammatory infiltration in the sections. According to the tested variables, there was no statistical significant difference between the materials when comparing all groups as a whole. When comparing individual materials to each other there was statistical differences among some of the tested materials. Conclusion: The healing outcome after periapical surgery of a five-wall resection defect could not be increased by infill with autogenous bone or bone graft substitutes. The most important factor for the healing outcome in periapical surgery is the quality of the root-end sealing. The healing outcome after some of the tested bone substitutes, might be improved by longer healing time.