期刊文献+
共找到268篇文章
< 1 2 14 >
每页显示 20 50 100
Silk-based nerve guidance conduits with macroscopic holes modulate the vascularization of regenerating rat sciatic nerve
1
作者 Carina Hromada Patrick Heimel +10 位作者 Markus Kerbl LászlóGál Sylvia Nürnberger Barbara Schaedl James Ferguson Nicole Swiadek Xavier Monforte Johannes C.Heinzel Antal Nógrádi Andreas H.Teuschl-Woller David Hercher 《Neural Regeneration Research》 SCIE CAS 2025年第6期1789-1800,共12页
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the ... Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use. 展开更多
关键词 axon regeneration blood vessel functional recovery macroporous nerve lesion peripheral nerve repair sciatic nerve silk-based nerve guidance conduit VASCULARIZATION
下载PDF
A novel flexible nerve guidance conduit promotes nerve regeneration while providing excellent mechanical properties
2
作者 Tong Li Quhan Cheng +11 位作者 Jingai Zhang Boxin Liu Yu Shi Haoxue Wang Lijie Huang Su Zhang Ruixin Zhang Song Wang Guangxu Lu Peifu Tang Zhongyang Liu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2084-2094,共11页
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit... Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries. 展开更多
关键词 aligned fibers anti-kinking helical fibers nerve guidance conduit nerve regeneration peripheral nerve injury topological guidance
下载PDF
Human umbilical cord mesenchymal stem cell-derived exosomes loaded into a composite conduit promote functional recovery after peripheral nerve injury in rats 被引量:3
3
作者 Haoshuai Tang Junjin Li +6 位作者 Hongda Wang Jie Ren Han Ding Jun Shang Min Wang Zhijian Wei Shiqing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期900-907,共8页
Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regu... Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury. 展开更多
关键词 axon growth collagen EXOSOME human umbilical cord mesenchymal stem cells hyaluronic acid muscular atrophy nerve guidance conduits peripheral nerve regeneration
下载PDF
Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects 被引量:22
4
作者 Yang Wang Zheng-wei Li +2 位作者 Min Luo Ya-jun Li Ke-qiang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期965-971,共7页
The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data com... The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm conduit + bone marrow mesenchymal stem sciatic nerve defects with a polylactic glycolic acid cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel grafts than with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells grafts and the autologous nerve grafts. 展开更多
关键词 nerve regeneration peripheral nerve injury rabbits sciatic nerve injury autologous nerye repair polylactic glycolic acid conduit extracellular matrix gel grafting stress relaxation creep viscoelasticity HISTOMORPHOLOGY ELECTROPHYSIOLOGY neural regeneration
下载PDF
Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects 被引量:21
5
作者 Huawei Liu Weisheng Wen +5 位作者 Min Hu Wenting Bi Lijie Chen Sanxia Liu Peng Chen Xinying Tan 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第33期3139-3147,共9页
Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in ra... Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa- line groups than in the nerve growth factor-microspheres and autologous nerve groups. Electro- physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di- ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits com- bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. 展开更多
关键词 neural regeneration peripheral newe injury tissue engineering newe growth factor microspherefacial nerve defect CHITOSAN nerve conduit grants-suppoSed paper NEUROREGENERATION
下载PDF
Biological conduit small gap sleeve bridging method for peripheral nerve injury: regeneration law of nerve fibers in the conduit 被引量:8
6
作者 Pei-xun Zhang Li-ya A +5 位作者 Yu-hui Kou Xiao-feng Yin Feng Xue Na Han Tian-bing Wang Bao-guo Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第1期71-78,共8页
The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium su... The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good his- tocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks), the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objec- tive and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury. 展开更多
关键词 nerve regeneration peripheral nerve small gap AXONS Schwann cells repair injury biological conduit NSFC grants neural regeneration
下载PDF
Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation 被引量:6
7
作者 Gong-Hai Han Jiang Peng +4 位作者 Ping Liu Xiao Ding Shuai Wei Sheng Lu Yu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1343-1351,共9页
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve sc... In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury. 展开更多
关键词 nerve REGENERATION peripheral nerve injury nerve conduitS DECELLULARIZATION EXTRACELLULAR matrix Schwann cell neural REGENERATION
下载PDF
Decellularized sciatic nerve matrix as a biodegradable conduit for peripheral nerve regeneration 被引量:5
8
作者 Jongbae Choi Jun Ho Kim +3 位作者 Ji Wook Jang Hyun Jung Kim Sung Hoon Choi Sung Won Kwon 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1796-1803,共8页
The use of autologous nerve grafts remains the gold standard for treating nerve defects, but current nerve repair techniques are limited by donor tissue availability and morbidity associated with tissue loss. Recently... The use of autologous nerve grafts remains the gold standard for treating nerve defects, but current nerve repair techniques are limited by donor tissue availability and morbidity associated with tissue loss. Recently, the use of conduits in nerve injury repair, made possible by tissue engineering, has shown therapeutic potential. We manufactured a biodegradable, collagen-based nerve conduit containing decellularized sciatic nerve matrix and compared this with a silicone conduit for peripheral nerve regeneration using a rat model. The collagen-based conduit contains nerve growth factor, brain-derived neurotrophic factor, and laminin, as demonstrated by enzyme-linked immunosorbent assay. Scanning electron microscopy images showed that the collagen-based conduit had an outer wall to prevent scar tissue infiltration and a porous inner structure to allow axonal growth. Rats that were implanted with the collagen-based conduit to bridge a sciatic nerve defect experienced significantly improved motor and sensory nerve functions and greatly enhanced nerve regeneration compared with rats in the sham control group and the silicone conduit group. Our results suggest that the biodegradable collagen-based nerve conduit is more effective for peripheral nerve regeneration than the silicone conduit. 展开更多
关键词 nerve regeneration BIODEGRADABLE decellularized collagen nerve conduit growth factor peripheral nerve injury REGENERATION silicone conduit rat model
下载PDF
Bridging peripheral nerves using a deacetyl chitin conduit combined with short-term electrical stimulation 被引量:5
9
作者 Zhongli Zhang Xin Li +2 位作者 Songjie Zuo Jie Xin Peixun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第10期1075-1078,共4页
Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypoth-esized that the combination ... Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypoth-esized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, ifber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimu-lation can promote peripheral nerve repair. 展开更多
关键词 nerve regeneration peripheral nerve injury deacetyl chitin conduit electrical stimulation NSFC grant neural regeneration
下载PDF
Aligned fibers enhance nerve guide conduits when bridging peripheral nerve defects focused on early repair stage 被引量:3
10
作者 Qi Quan Hao-Ye Meng +7 位作者 Biao Chang Guang-Bo Liu Xiao-Qing Cheng He Tang Yu Wang Jiang Peng Qing Zhao Shi-Bi Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期903-912,共10页
Nerve conduits enhance nerve regeneration in the repair of long-distance peripheral nerve defects. To help optimize the effectiveness of nerve conduits for nerve repair, we developed a multi-step electrospinning proce... Nerve conduits enhance nerve regeneration in the repair of long-distance peripheral nerve defects. To help optimize the effectiveness of nerve conduits for nerve repair, we developed a multi-step electrospinning process for constructing nerve guide conduits with aligned nanofibers. The alignment of the nerve guide conduits was characterized by scanning electron microscopy and fast Fourier transform. The mechanical performance of the nerve guide conduits was assessed by testing for tensile strength and compression resistance. The biological performance of the aligned fibers was examined using Schwann cells, PC12 cells and dorsal root ganglia in vitro. Immunohistochemistry was performed for the Schwann cell marker S100 and for the neurofilament protein NF200 in PC12 cells and dorsal root ganglia. In the in vivo experiment, a 1.5-cm defect model of the right sciatic nerve in adult female Sprague-Dawley rats was produced and bridged with an aligned nerve guide conduit. Hematoxylin-eosin staining and immunohistochemistry were used to observe the expression of ATF3 and cleaved caspase-3 in the regenerating matrix. The recovery of motor function was evaluated using the static sciatic nerve index. The number of myelinated fibers, axon diameter, fiber diameter, and myelin thickness in the distal nerve were observed by electron microscopy. Gastrocnemius muscle mass ratio was also determined. The analyses revealed that aligned nanofiber nerve guide conduits have good mechanical properties and can induce Schwann cells, PC12 cells and dorsal root ganglia to aggregate along the length of the nanofibers, and promote the growth of longer axons in the latter two(neuronal) cell types. The aligned fiber nerve conduits increased the expression of ATF3 and cleaved caspase-3 at the middle of the regenerative matrix and at the distal nerve segment, improved sciatic nerve function, increased muscle mass of the gastrocnemius muscle, and enhanced recovery of distal nerve ultrastructure. Collectively, the results show that highly aligned nanofibers improve the performance of the nerve conduit bridge, and enhance its effectiveness in repairing peripheral nerve defects. 展开更多
关键词 nerve REGENERATION nerve guide conduit electrospinning peripheral nerve injury ALIGNED fiber SCIATIC nerve structure mechanical function nerve scaffold nanofiber neural REGENERATION
下载PDF
Peripheral nerve regeneration with conduits:use of vein tubes 被引量:7
11
作者 Rodrigo Guerra Sabongi Marcela Fernandes Joao Baptista Gomes dos Santos 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期529-533,共5页
Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the com-plexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are n... Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the com-plexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the au-tologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit. 展开更多
关键词 peripheral nerve injury nerve graft nerve conduit Wallerian degeneration neurotrophic factors VEINS AUTOGRAFTS nerve regeneration
下载PDF
Sciatic nerve repair using adhesive bonding and a modified conduit 被引量:3
12
作者 Xiangdang Liang Hongfei Cai +3 位作者 Yongyu Hao Geng Sun Yaoyao Song Wen Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第6期594-601,共8页
When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not fix the nerve ends well and allows glue to easily invade the nerve ends. In this study, we estab... When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not fix the nerve ends well and allows glue to easily invade the nerve ends. In this study, we established a rat model of completely transected sciatic nerve injury and re- paired it using a modified 1 cm-length conduit with inner diameter of 1.5 mm. Each end of the cylindrical conduit contains a short linear channel, while the enclosed central tube protects the nerve ends well Nerves were repaired with 2-octyl-cyanoacrylate and suture, which complement the function of the modified conduit. The results demonstrated that for the same conduit, the av- erage operation time using the adhesive method was much shorter than with the suture method. No significant differences were found between the two groups in sciatic function index, motor evoked potential latency, motor evoked potential amplitude, muscular recovery rate, number of medullated nerve fibers, axon diameter, or medullary sheath thickness. Thus, the adhesive method for repairing nerves using a modified conduit is feasible and effective, and reduces the operation time while providing an equivalent repair effect. 展开更多
关键词 nerve regeneration nerve repair adhesive anastomosis CYANOACRYLATE nerve conduits sciatic nerve ELECTROPHYSIOLOGY muscle recovery the International Technology Cooperation Program neural regeneration
下载PDF
Construction of a three-dimensional bionic nerve conduit containing two neurotrophic factors with separate delivery systems for the repair of sciatic nerve defects 被引量:3
13
作者 Zhiyue Li Qun Zhao +2 位作者 Ran Bi Yong Zhuang Siyin Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第13期988-994,共7页
Previous studies of nerve conduits have investigated numerous properties, such as conduit luminal structure and neurotrophic factor incorporation, for the regeneration of nerve defects. The present study used a poly(... Previous studies of nerve conduits have investigated numerous properties, such as conduit luminal structure and neurotrophic factor incorporation, for the regeneration of nerve defects. The present study used a poly(lactic-co-glycolic acid) (PLGA) copolymer to construct a three-dimensional (3D) bionic nerve conduit, with two channels and multiple microtubule lumens, and incorporating two neurotrophic factors, each with their own delivery system, as a novel environment for peripheral nerve regeneration. The efficacy of this conduit in repairing a 1.5 cm sciatic nerve defect was compared with PLGA-alone and PLGA-microfilament conduits, and autologous nerve transplantation. Results showed that compared with the other groups, the 3D bionic nerve conduit had the fastest nerve conduction velocity, largest electromyogram amplitude, and shortest electromyogram latency. In addition, the nerve fiber density, myelin sheath thickness and axon diameter were significantly increased, and the recovery rate of the triceps surae muscle wet weight was lowest. These findings suggest that 3D bionic nerve conduits can provide a suitable microenvironment for peripheral nerve regeneration to efficiently repair sciatic nerve defects. p 展开更多
关键词 oly(lactic-co-glycolic acid) sciatic nerve defect nerve conduit BIONICS nerve tissue engineering neural regeneration
下载PDF
Efficacy of nanofibrous conduits in repair of longsegment sciatic nerve defects 被引量:3
14
作者 Esmaeil Biazar Saeed Heidari Keshel Majid Pouya 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第27期2501-2509,共9页
Our previous studies have histomorphologically confirmed that nanofibrous poly(3-hydroxybutyrate- co-3-hydroxyvalerate) conduit can be used to repair 30-mm-long sciatic nerve defects. However, the repair effects on ... Our previous studies have histomorphologically confirmed that nanofibrous poly(3-hydroxybutyrate- co-3-hydroxyvalerate) conduit can be used to repair 30-mm-long sciatic nerve defects. However, the repair effects on rat behaviors remain poorly understood. In this study, we used nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous sciatic nerve to bridge 30-ram-long rat sciatic nerve gaps. Within 4 months after surgery, rat sciatic nerve functional re- covery was evaluated per month by behavioral analyses, including toe out angle, toe spread anal- ysis, walking track analysis, extensor postural thrust, swimming test, open-field analysis and no- ciceptive function. Results showed that rat sciatic nerve functional recovery was similar after nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous nerve grafting. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit is suitable in use for repair of long-segment sciatic nerve defects. 展开更多
关键词 neural regeneration peripheral nerve injury sciatic nerve nerve conduit poly(3-hydroxybutyrate-co-3-hydroxyvalerate) BEHAVIORS motor function nociceptive function grants-supported paper NEUROREGENERATION
下载PDF
Clinical outcomes for Conduits and Scaffolds in peripheral nerve repair 被引量:3
15
作者 David J Gerth Jun Tashiro Seth R Thaller 《World Journal of Clinical Cases》 SCIE 2015年第2期141-147,共7页
The gold standard of peripheral nerve repair is nerve autograft when tensionless repair is not possible. Use of nerve autograft has several shortcomings, however.These include limited availability of donor tissue,sacr... The gold standard of peripheral nerve repair is nerve autograft when tensionless repair is not possible. Use of nerve autograft has several shortcomings, however.These include limited availability of donor tissue,sacrifice of a functional nerve, and possible neuroma formation. In order to address these deficiencies,researchers have developed a variety of biomaterials available for repair of peripheral nerve gaps. We review the clinical studies published in the English literature detailing outcomes and reconstructive options.Regardless of the material used or the type of nerve repaired, outcomes are generally similar to nerve autograft in gaps less than 3 cm. New biomaterials currently under preclinical evaluation may provide improvements in outcomes. 展开更多
关键词 Plastic surgery RECONSTRUCTIVE SURGICAL procedures nerve tissue conduit SCAFFOLD
下载PDF
A hyaluronic acid granular hydrogel nerve guidance conduit promotes regeneration and functional recovery of injured sciatic nerves in rats 被引量:5
16
作者 Jie Yang Chia-Chen Hsu +3 位作者 Ting-Ting Cao Hua Ye Jing Chen Yun-Qing Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期657-663,共7页
A hyaluronic acid granular hydrogel can promote neuronal and astrocyte colony formation and axonal extension in vitro,suggesting that the hydrogel can simulate an extracellular matrix structure to promote neural regen... A hyaluronic acid granular hydrogel can promote neuronal and astrocyte colony formation and axonal extension in vitro,suggesting that the hydrogel can simulate an extracellular matrix structure to promote neural regeneration.However,in vivo experiments have not been conducted.In this study,we transplanted a hyaluronic acid granular hydrogel nerve guidance conduit to repair a 10-mm long sciatic nerve gap.The Basso,Beattie,and Bresnahan locomotor rating scale,sciatic nerve compound muscle action potential recording,Fluoro-Gold retrograde tracing,growth related protein 43/S100 immunofluorescence staining,transmission electron microscopy,gastrocnemius muscle dry/wet weight ratio,and Masson’s trichrome staining results showed that the nerve guidance conduit exhibited similar regeneration of sciatic nerve axons and myelin sheath,and recovery of the electrophysiological function and motor function as autologous nerve transplantation.The conduit results were superior to those of a bulk hydrogel or silicone tube transplant.These findings suggest that tissue-engineered nerve conduits containing hyaluronic acid granular hydrogels effectively promote the morphological and functional recovery of the injured sciatic nerve.The nerve conduits have the potential as a material for repairing peripheral nerve defects. 展开更多
关键词 functional recovery granular hydrogel hyaluronic acid myelin sheath nerve conduit nerve regeneration peripheral nerve regeneration sciatic nerve injury tissue engineering transection injury
下载PDF
Scaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats 被引量:2
17
作者 Aaron M.Adams Keith W.VanDusen +2 位作者 Tatiana Y.Kostrominova Jacob P.Mertens Lisa M.Larkin 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1529-1537,共9页
Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibrobla... Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E 15). EFCs were fabricated utilizing primary fi- broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re- spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot- ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the El5 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair. 展开更多
关键词 nerve regeneration peripheral nerve repair neural conduit tissue engineering FIBROBLASTS neuralcells
下载PDF
Novel electrospun poly(ε-caprolactone)/type Ⅰ collagen nanofiber conduits for repair of peripheral nerve injury 被引量:2
18
作者 Chun-Ming Yen Chiung-Chyi Shen +5 位作者 Yi-Chin Yang Bai-Shuan Liu Hsu-Tung Lee Meei-Ling Sheu Meng-Hsiun Tsai Wen-Yu Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第9期1617-1625,共9页
Recent studies have shown the potential of artificially synthesized conduits in the repair of peripheral nerve injury. Natural biopolymers have received much attention because of their biocompatibility. To investigate... Recent studies have shown the potential of artificially synthesized conduits in the repair of peripheral nerve injury. Natural biopolymers have received much attention because of their biocompatibility. To investigate the effects of novel electrospun absorbable poly(ε-caprolactone)/type Ⅰ collagen nanofiber conduits(biopolymer nanofiber conduits) on the repair of peripheral nerve injury, we bridged 10-mm-long sciatic nerve defects with electrospun absorbable biopolymer nanofiber conduits, poly(ε-caprolactone) or silicone conduits in Sprague-Dawley rats. Rat neurologica1 function was weekly evaluated using sciatic function index within8 weeks after repair. Eight weeks after repair, sciatic nerve myelin sheaths and axon morphology were observed by osmium tetroxide staining, hematoxylin-eosin staining, and transmission electron microscopy.S-100(Schwann cell marker) and CD4(inflammatory marker) immunoreactivities in sciatic nerve were detected by immunohistochemistry. In rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits, no serious inflammatory reactions were observed in rat hind limbs, the morphology of myelin sheaths in the injured sciatic nerve was close to normal. CD4 immunoreactivity was obviously weaker in rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits than in those subjected to repair with poly(ε-caprolactone) or silicone. Rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits tended to have greater sciatic nerve function recovery than those receiving poly(ε-caprolactone) or silicone repair. These results suggest that electrospun absorbable poly(ε-caprolactone)/type Ⅰ collagen nanofiber conduits have the potential of repairing sciatic nerve defects and exhibit good biocompatibility. All experimental procedures were approved by Institutional Animal Care and Use Committee of Taichung Veteran General Hospital, Taiwan, China(La-1031218) on October 2, 2014. 展开更多
关键词 poly(ε-caprolactone) type collagen ELECTROSPINNING sciatic nerve nerve conduit immunohistostaining walking track analysis peripheral nerve injury
下载PDF
Sustained release of exosomes loaded into polydopamine-modified chitin conduits promotes peripheral nerve regeneration in rats 被引量:4
19
作者 Ci Li Song-Yang Liu +5 位作者 Meng Zhang Wei Pi Bo Wang Qi-Cheng Li Chang-Feng Lu Pei-Xun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第9期2050-2057,共8页
Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation.On the basis of previously studied nerve conduits,we de... Exosomes derived from mesenchymal stem cells are of therapeutic interest because of their important role in intracellular communication and biological regulation.On the basis of previously studied nerve conduits,we designed a polydopamine-modified chitin conduit loaded with mesenchymal stem cell-derived exosomes that release the exosomes in a sustained and stable manner.In vitro experiments revealed that rat mesenchymal stem cell-derived exosomes enhanced Schwann cell proliferation and secretion of neurotrophic and growth factors,increased the expression of Jun and Sox2 genes,decreased the expression of Mbp and Krox20 genes in Schwann cells,and reprogrammed Schwann cells to a repair phenotype.Furthermore,mesenchymal stem cell-derived exosomes promoted neurite growth of dorsal root ganglia.The polydopamine-modified chitin conduits loaded with mesenchymal stem cell-derived exosomes were used to bridge 2 mm rat sciatic nerve defects.Sustained release of exosomes greatly accelerated nerve healing and improved nerve function.These findings confirm that sustained release of mesenchymal stem cell-derived exosomes loaded into polydopamine-modified chitin conduits promotes the functional recovery of injured peripheral nerves. 展开更多
关键词 EXOSOME mesenchymal stem cells modification strategy nerve conduits peripheral nerve injury peripheral nerve regeneration POLYDOPAMINE reprogramming state Schwann cells sustained release
下载PDF
Validation of a novel animal model for sciatic nerve repair with an adipose-derived stem cell loaded fibrin conduit 被引量:4
20
作者 Maximilian M.Saller Rosa-Eva Huettl +4 位作者 Julius M.Mayer Annette Feuchtinger Christian Krug Thomas Holzbach Elias Volkmer 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第5期854-861,共8页
Despite the regenerative capabilities of peripheral nerves, severe injuries or neuronal trauma of critical size impose immense hurdles for proper restoration of neuro-muscular circuitry. Autologous nerve grafts improv... Despite the regenerative capabilities of peripheral nerves, severe injuries or neuronal trauma of critical size impose immense hurdles for proper restoration of neuro-muscular circuitry. Autologous nerve grafts improve re-establishment of connectivity, but also comprise substantial donor site morbidity. We developed a rat model which allows the testing of different cell applications, i.e., mesenchymal stem cells, to improve nerve regeneration in vivo. To mimic inaccurate alignment of autologous nerve grafts with the injured nerve, a 20 mm portion of the sciatic nerve was excised, and sutured back in place in reversed direction. To validate the feasibility of our novel model, a fibrin gel conduit containing autologous undifferentiated adipose-derived stem cells was applied around the coaptation sites and compared to autologous nerve grafts. After evaluating sciatic nerve function for 16 weeks postoperatively, animals were sacrificed, and gastrocnemius muscle weight was determined along with morphological parameters(g-ratio, axon density & diameter) of regenerating axons. Interestingly, the addition of undifferentiated adipose-derived stem cells resulted in a significantly improved re-myelination, axon ingrowth and functional outcome, when compared to animals without a cell seeded conduit. The presented model thus displays several intriguing features: it imitates a certain mismatch in size, distribution and orientation of axons within the nerve coaptation site. The fibrin conduit itself allows for an easy application of cells and, as a true critical-size defect model, any observed improvement relates directly to the performed intervention. Since fibrin and adipose-derived stem cells have been approved for human applications, the technique can theoretically be performed on humans. Thus, we suggest that the model is a powerful tool to investigate cell mediated assistance of peripheral nerve regeneration. 展开更多
关键词 critical-size nerve defect fibrin conduit autologous nerve transplant peripheral nerve regeneration adipose-derived stem/progenitor cells sciatic function index sciatic nerve re-innervation axon guidance peripheral circuitry
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部