期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Investigation of rock salt layer creep and its effects on casing collapse 被引量:13
1
作者 S.Reza Taheri Ali Pak +2 位作者 Saeed Shad Behzad Mehrgini Meisam Razifar 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期357-365,共9页
Casing collapse is one of the costly incidents in the oil industry. In the oil fields of southwest Iran, most casing collapses have occurred in Gachsaran formation, and the halite rock salt layer in this formation may... Casing collapse is one of the costly incidents in the oil industry. In the oil fields of southwest Iran, most casing collapses have occurred in Gachsaran formation, and the halite rock salt layer in this formation may be the main cause for these incidents because of its peculiar creep behavior. In this research, triaxial creep experiments have been conducted on Gachsaran salt samples under various temperatures and differential stresses. The main purpose was to determine the creep characteristics of Gachsaran rock salt,and to examine the role of creep in several casing collapses that occurred in this formation. Results indicated that the halite rock salt of Gachsaran formation basically obeys the power law;however, its creep parameters are quite different from other halite rocks elsewhere. The time-dependent creep of Gachsaran rock salt exhibits strong sensitivity to temperature change;however, its sensitivity to variation of differential stress is rather low. The numerical simulation of the rock salt creep in a real oil well demonstrated the importance of creep and reservoir conditions on the safety factor of the tubing related to casing collapse. 展开更多
关键词 Rock salt Gachsaran formation CREEP Power law Casing collapse Numerical simulation
下载PDF
The development of super-high collapse resistant casing 被引量:1
2
作者 Tian Qingchao Dong Xiaoming 《Baosteel Technical Research》 CAS 2008年第2期21-25,共5页
Super-high collapse resistant casings were developed by using Ti, Nb and V microalloyed CrMo steel and cross rolling techniques. A transmission electron microscope(TEM) and X-ray diffractometer were used to observe ... Super-high collapse resistant casings were developed by using Ti, Nb and V microalloyed CrMo steel and cross rolling techniques. A transmission electron microscope(TEM) and X-ray diffractometer were used to observe the characteristics of the microstructure. It was found that the ( 111 ) texture and the nano-scale precipitates distribute in a way that is beneficial to the collapse resistance, and the collapse strength of the prepared casing had a measurement, which was approximately 60% higher than the API standard value. A design concept to attain super-high collapse resistance is proposed based on the texture design and microstructure control. 展开更多
关键词 super-high collapse resistance casing TEXTURE precipitation hardening
下载PDF
Thermal stresses analysis of casing string used in enhanced geothermal systems wells 被引量:1
3
作者 ZHANG Pei-feng 《Journal of Groundwater Science and Engineering》 2016年第4期293-300,共8页
In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield stre... In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield strength, the casing deforms and collapses. The traditional casing design standard only considers the influence of temperature variation on casing material's yield strength. Actually, for commonly used grades of steel pipe, casing's material properties-such as yield strength, coefficient of thermal expansion, and modulus of elasticity change with temperature variation. In this paper, the modified thermal stress equation is given. Examples show that the allowable temperature of the material grade N80's casing is only 164 ℃, which is much lower than that of the traditional design standard. The effective method to improve the casing pipe's allowable temperature is pre-stressed cementing technology. Pre-stressed cementing includes pre-tension stress cementing and pre-pressure stress cementing. This paper focuses on the design method of full casing pre-tension stress cementing and the ground anchor full casing string pre-tension cementing construction process. 展开更多
关键词 Casing thermal stress EGS wells Casing deformation and collapse Pre-tension stress cementing Well completion design Pre-stressed cementing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部