期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Collapse–revival of squeezing of two atoms in dissipative cavities
1
作者 邹红梅 方卯发 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期145-150,共6页
Based on the time-convolutionless master-equation approach, we investigate the squeezing dynamics of two atoms in dissipative cavities. We find that the atomic squeezing is related to initial atomic states, atom–cavi... Based on the time-convolutionless master-equation approach, we investigate the squeezing dynamics of two atoms in dissipative cavities. We find that the atomic squeezing is related to initial atomic states, atom–cavity couplings, nonMarkovian effects and resonant frequencies of an atom and its cavity. The results show that a collapse–revival phenomenon will occur in the atomic squeezing and this process is accompanied by the buildup and decay of entanglement between two atoms. Enhancing the atom–cavity coupling can increase the frequency of the collapse–revival of the atomic squeezing.The stronger the non-Markovian effect is, the more obvious the collapse–revival phenomenon is. In particular, if the atom–cavity coupling or the non-Markovian effect is very strong, the atomic squeezing will tend to a stably periodic oscillation in a long time. The oscillatory frequency of the atomic squeezing is dependent on the resonant frequency of the atom and its cavity. 展开更多
关键词 collapse–revival atomic squeezing atom–cavity coupling non-Markovian effect
下载PDF
Energy Absorption and Deformation Mechanism of Lotus-type Porous Coppers in Perpendicular Direction 被引量:2
2
作者 Weidong Li Kai Xu +3 位作者 Honghao Li Haoling Jia Xinhua Liu Jianxin xie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第11期1353-1361,共9页
As metallic foams used for energy absorption in the automotive and aerospace industries, recently invented lotus-type porous metals are viewed as potential energy absorbers. Yet, solid conclusion on their eligibility ... As metallic foams used for energy absorption in the automotive and aerospace industries, recently invented lotus-type porous metals are viewed as potential energy absorbers. Yet, solid conclusion on their eligibility as energy absorbers is still in question, particularly when compression is in the direction perpendicular to the axial orientation of cylindrical pores. In this work, the energy absorption of lotus-type porous coppers in the perpendicular direction is investigated at strain rates from 0.001 s^(-1) to^2400 s^(-1). The energy absorption capacity and the energy absorption efficiency are calculated to be4–16 k J/kg and 0.32–0.7, respectively, slightly inferior to metal foams and the same porous solid compressed in the parallel direction due to the shortened extent of the plateau stress region. The deformation mechanism is examined experimentally in conjunction with finite element modeling. Both suggest that gradual squeeze and collapse of pores are the mechanisms accommodating the energy absorption. The deformation is generally evenly distributed over pore ligaments and independent of strain rate. 展开更多
关键词 Lotus-type porous structure Energy absorption Plateau stress region Plastic collapse Strain rate effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部