The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column c...The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column collapse boundary condition in the physical experiments of this study is a new type of boundary conditions with a single free face and a three-dimensional deposit. Physical experiments have shown that the mobility of small particles during the collapse of granular columns was greater than that of large particles. For example, when particle size was increased from 5 to 15 mm, deposit runout was decreased by about 16.4%. When a column consisted of two particle types with different sizes, these particles could mix in the vicinity of layer interfaces and small particles might increase the mobility of large particles. In the process of collapse, potential and kinetic energy conversion rate is fluctuated. By increasing initial aspect ratio a, the ratio of the initial height of column to its length along flow direction,potential and kinetic energy conversion rate is decreased. For example, as a was increased from 0.5 to 4, the ratio of maximum kinetic energy obtained and total potential energy loss was decreased from47.6% to 7.4%. After movement stopped, an almost trapezoidal body remained in the column and a fanlike or fan-shaped accumulation was formed on the periphery of column. Using multiple exponential functions of the aspect ratio a, the planar morphology of the collapse deposit of granular columns could be quantitatively characterized. The movement of pillar dangerous rock masses with collapse failure mode could be evaluated using this granular column experimental results.展开更多
Based on the importance of fractured rock mass seepage research, in order to analyze seepage flow characteristics of collapse column under the influence of mining, a method by embedding fractured rock mass flow solid ...Based on the importance of fractured rock mass seepage research, in order to analyze seepage flow characteristics of collapse column under the influence of mining, a method by embedding fractured rock mass flow solid coupling relationship into FLAC3D internal flow models is presented according to fluid-solid coupling theory and strength criterion. A calculation model of numerical analysis was established, and the influences of mining pressure and plastic damage to pore water pressure and seepage vector change rule were studied. The results show that collapse column is the main channel of confined water seepage upward. The impact is not big when the workface is away from the collapse column. But when the workface is nearing a collapse column, there will be a seepage channel on a side near the workface, in which seepage vector and head are comparatively large. With workface pushing through collapse column, the seepage channel transfers to the other side of the column. In addition, when the plastic damage area within the collapse column breaks through, a "pipeline flow" will be formed within the column, and seepage field will change remarkably and the possibility of water bursting will be greater.展开更多
Discontinuous deformation analysis (DDA) method, proposed firstly by Shi [1] in 1988, is a novel numerical approach to simulate the discontinuous deformation behaviors of blocky rock structures. In DDA, the domain o...Discontinuous deformation analysis (DDA) method, proposed firstly by Shi [1] in 1988, is a novel numerical approach to simulate the discontinuous deformation behaviors of blocky rock structures. In DDA, the domain of interest is represented as an assemblage of discrete blocks and the joints are treated as interfaces between blocks. The governing equations of DDA are derived from Newton’s Second Law of Motion and the Principle of Minimum Potential Energy.展开更多
基金supported by National Key R&D Program of China (Nos 2018YFC1504803, 2018YFC1504806)Geological Hazard Prevention and Control Project for Follow-Up Work of the Three Gorges Project (Nos. 001212019CC60001,0001212018CC60008)
文摘The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column collapse boundary condition in the physical experiments of this study is a new type of boundary conditions with a single free face and a three-dimensional deposit. Physical experiments have shown that the mobility of small particles during the collapse of granular columns was greater than that of large particles. For example, when particle size was increased from 5 to 15 mm, deposit runout was decreased by about 16.4%. When a column consisted of two particle types with different sizes, these particles could mix in the vicinity of layer interfaces and small particles might increase the mobility of large particles. In the process of collapse, potential and kinetic energy conversion rate is fluctuated. By increasing initial aspect ratio a, the ratio of the initial height of column to its length along flow direction,potential and kinetic energy conversion rate is decreased. For example, as a was increased from 0.5 to 4, the ratio of maximum kinetic energy obtained and total potential energy loss was decreased from47.6% to 7.4%. After movement stopped, an almost trapezoidal body remained in the column and a fanlike or fan-shaped accumulation was formed on the periphery of column. Using multiple exponential functions of the aspect ratio a, the planar morphology of the collapse deposit of granular columns could be quantitatively characterized. The movement of pillar dangerous rock masses with collapse failure mode could be evaluated using this granular column experimental results.
基金the financial support for this work by the National Key Basic Research and Development Program of China (No. 2010CB226805)the National Natural Science Foundation of China (No. 0874103)the Natural Science Foundation of Jiangsu Province (No. BK2008135)
文摘Based on the importance of fractured rock mass seepage research, in order to analyze seepage flow characteristics of collapse column under the influence of mining, a method by embedding fractured rock mass flow solid coupling relationship into FLAC3D internal flow models is presented according to fluid-solid coupling theory and strength criterion. A calculation model of numerical analysis was established, and the influences of mining pressure and plastic damage to pore water pressure and seepage vector change rule were studied. The results show that collapse column is the main channel of confined water seepage upward. The impact is not big when the workface is away from the collapse column. But when the workface is nearing a collapse column, there will be a seepage channel on a side near the workface, in which seepage vector and head are comparatively large. With workface pushing through collapse column, the seepage channel transfers to the other side of the column. In addition, when the plastic damage area within the collapse column breaks through, a "pipeline flow" will be formed within the column, and seepage field will change remarkably and the possibility of water bursting will be greater.
文摘Discontinuous deformation analysis (DDA) method, proposed firstly by Shi [1] in 1988, is a novel numerical approach to simulate the discontinuous deformation behaviors of blocky rock structures. In DDA, the domain of interest is represented as an assemblage of discrete blocks and the joints are treated as interfaces between blocks. The governing equations of DDA are derived from Newton’s Second Law of Motion and the Principle of Minimum Potential Energy.