期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Topology optimization and seismic collapse assessment of shape memory alloy(SMA)-braced frames:Effectiveness of Fe-based SMAs
1
作者 Aydin HASSANZADEH Saber MORADI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第3期281-301,共21页
This paper presents a seismic topology optimization study of steel braced frames with shape memory alloy(SMA)braces.Optimal SMA-braced frames(SMA-BFs)with either Fe-based SMA or NiTi braces are determined in a perform... This paper presents a seismic topology optimization study of steel braced frames with shape memory alloy(SMA)braces.Optimal SMA-braced frames(SMA-BFs)with either Fe-based SMA or NiTi braces are determined in a performance-based seismic design context.The topology optimization is performed on 5-and 10-story SMA-BFs considering the placement,length,and cross-sectional area of SMA bracing members.Geometric,strength,and performance-based design constraints are considered in the optimization.The seismic response and collapse safety of topologically optimal SMA-BFs are assessed according to the FEMA P695 methodology.A comparative study on the optimal SMA-BFs is also presented in terms of total relative cost,collapse capacity,and peak and residual story drift.The results demonstrate that Fe-based SMA-BFs exhibit higher collapse capacity and more uniform distribution of lateral displacement over the frame height while being more cost-effective than NiTi braced frames.In addition to a lower unit price compared to NiTi,Fe-based SMAs reduce SMA material usage.In frames with Fe-based SMA braces,the SMA usage is reduced by up to 80%.The results highlight the need for using SMAs with larger recoverable strains. 展开更多
关键词 topology optimization shape memory alloy Fe-based SMA steel braced frames performance-based seismic design collapse assessment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部