Mesenchymal stem cells(MSCs)are multipotent adult stem cells of mesodermal origin that can be isolated from various tissues,including bone marrow,tooth pulp,adipose tissue,and umbilical cord.MSCs have gained significa...Mesenchymal stem cells(MSCs)are multipotent adult stem cells of mesodermal origin that can be isolated from various tissues,including bone marrow,tooth pulp,adipose tissue,and umbilical cord.MSCs have gained significant attention in regenerative medicine due to their ability to modulate the immune system and favor tissue repair.MSCs enrich the medium in which they are cultivated with a broad range of bioactive molecules,including growth factors,cytokines,chemokines,enzymes,nucleic acids,and extracellular vesicles that collectively compose the MSC secretome.An increasing number of pre-clinical studies suggest that delivering in vivo an MSC-conditioned medium(i.e.,the medium collected from MSC cultures after at least 3 days of exposure)exerts neuroprotective and anti-inflammatory effects in a variety of neurological conditions.展开更多
2024年1月4日,在Web of Science网站以“cotton”或“Gossypium”为“Title”(文题)检索词查询“Web of Science Core Collection”和“Chinese Science Citation DatabaseSM”数据库中2023年发表文章,选择被引次数5及其以上文章68篇。
This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 inn...This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 innovation design was proposed.Second,field-coupling theoretical models of sunlight concentration,photoelectric conversion,and transmitting antennas were established,and a systematic optimization design method was proposed.Third,a beam waveform optimization methodology considering both a high beam collection efficiency and a circular stepped beam shape was proposed.Fourth,a control strategy was developed to control the condenser pointing toward the sun while maintaining the transmitting antenna toward the rectenna.Fifth,a high-efficiency heat radiator design method based on bionics and topology optimization was proposed.Sixth,a method for improving the rectenna array’s reception,rectification,and direct current(DC)power synthesis efficiencies is presented.Seventh,high-precision measurement technology for high-accuracy beam-pointing control was developed.Eighth,a smart mechanical structure was designed and developed.Finally,the developed SSPS ground demonstration and verification system has the capacity for sun tracking,a high concentration ratio,photoelectric conversion,microwave conversion and emission,microwave reception,and rectification,and thus satisfactory results were obtained.展开更多
Percutaneous or endoscopic drainage is the initial choice for the treatment of peripancreatic fluid collection in symptomatic patients.Endoscopic transgastric fenestration(ETGF)was first reported for the management of...Percutaneous or endoscopic drainage is the initial choice for the treatment of peripancreatic fluid collection in symptomatic patients.Endoscopic transgastric fenestration(ETGF)was first reported for the management of pancreatic pseu-docysts of 20 patients in 2008.From a surgeon’s viewpoint,ETGF is a similar procedure to cystogastrostomy in that they both produce a wide outlet orifice for the drainage of fluid and necrotic debris.ETGF can be performed at least 4 wk after the initial onset of acute pancreatitis and it has a high priority over the surgical approach.However,the surgical approach usually has a better success rate because surgical cystogastrostomy has a wider outlet(>6 cm vs 2 cm)than ETGF.However,percutaneous or endoscopic drainage,ETGF,and surgical approach offer various treatment options for peripancreatic fluid collection patients based on their conditions.展开更多
Contrast-enhanced endoscopic ultrasound(CH-EUS)can overcome the limi-tations of endoscopic ultrasound-guided acquisition by identifying microvessels inside inhomogeneous tumours and improving the characterization of t...Contrast-enhanced endoscopic ultrasound(CH-EUS)can overcome the limi-tations of endoscopic ultrasound-guided acquisition by identifying microvessels inside inhomogeneous tumours and improving the characterization of these tumours.Despite the initial enthusiasm that oriented needle sampling under CH-EUS guidance could provide better diagnostic yield in pancreatic solid lesions,further studies did not confirm the supplementary values in cases of tissue acquisition guided by CH-EUS.This review details the knowledge based on the available data on contrast-guided procedures.The indications for CH-EUS tissue acquisition include isoechoic EUS lesions with poor visible delineation where CH-EUS can differentiate the lesion vascularisation from the surrounding parenchyma and also the mural nodules within biliopancreatic cystic lesions,which occur in select cases.Additionally,the roles of CH-EUS-guided therapy in patients whose pancreatic fluid collections or bile ducts that have an echogenic content have indications for drainage,and patients who have nonvisualized vessels that need to be highlighted via Doppler EUS are presented.Another indication is represented if there is a need for an immediate assessment of the post-radiofrequency ablation of pancreatic neuroendocrine tumours,in which case CH-EUS can be used to reveal the incomplete tumour destruction.展开更多
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in...The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.展开更多
Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generat...Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research.Effective progress has been made,attributed to advances in various fields such as supramolecular chemistry,biology and nanotechnology,and informatics.However,individual molecular machines are only capable of producing nanometer work and generally have only a single functionality.In order to address these problems,collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm.In this review,we comprehensively discuss recent developments in the collective behaviors of molecular machines.In particular,collective behavior is divided into two paradigms.One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials.The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations.We discuss design strategies for both modes and focus on the modulation of features and properties.Subsequently,in order to address existing challenges,the idea of transferring experience gained in the field of micro/nano robotics is presented,offering prospects for future developments in the collective behavior of molecular machines.展开更多
1.Introduction With the implementation of modern production strategies,such as“Industry 4.0”and“Made in China 2025,”the development of high-end mechanical equipment is gradually reaching a high degree of parameter...1.Introduction With the implementation of modern production strategies,such as“Industry 4.0”and“Made in China 2025,”the development of high-end mechanical equipment is gradually reaching a high degree of parameterization,digitalization,networking,and intelligence[1].High-end mechanical equipment no longer consists of traditional single devices,but is closely linked to the overall production process;that is,a variety of devices interact with each other and collectively form a complex system.However,faults can lead to production delays throughout the system and even seriously threaten the safety of workers[2].In addition,equipment operating in unmanned air or space vehicles(including space robots)cannot be repaired by humans if they break down[3].Until recently,the typical method of addressing machine faults was primarily the“fault cure”method,which involves manually shutting down,inspecting,and repairing the equipment to restore normal operation.Accordingly,the maintenance cycle of the traditional“fault cure”method is time-consuming,and the quality of the maintenance depends on the skills of the technician[4].展开更多
Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid d...Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics.展开更多
In the paper,we discuss the development of the multigap resistive plate chamber time-of-fight(TOF)technology and the production of the solenoidal tracker at RHIC(STAR)TOF detector in China at the beginning of the twen...In the paper,we discuss the development of the multigap resistive plate chamber time-of-fight(TOF)technology and the production of the solenoidal tracker at RHIC(STAR)TOF detector in China at the beginning of the twenty-frst century.Subsequently,recent experimental results from the frst beam energy scan program(BES-I)at the Relativistic Heavy Ion Collider(RHIC)pertaining to measurements of collectivity,chirality,criticality,global polarization,strangeness,heavy favor,dilepton and light nuclei productions are reviewed.展开更多
Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient(ITG) and trapped-electron-mode instabilities usin...Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient(ITG) and trapped-electron-mode instabilities using newly developed far-forward collective scattering measurements within ohmic plasmas in the J-TEXT tokamak.The ITG mode is characterized by frequencies ranging from 30 to 100 k Hz and wavenumbers(k_(θρs)) less than 0.3. Beyond a critical plasma density threshold, the ITG mode undergoes a bifurcation, which is marked by a reduction in frequency and an enhancement in amplitude. Concurrently, enhancements in ion energy loss and degradation in confinement are observed. This ground-breaking discovery represents the first instance of direct experimental evidence that establishes a clear link between ITG instability and ion thermal transport.展开更多
Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and eva...Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and evaluate the influence of varying mesh sizes(505 and 160μm)on the sampling efficiency of meroplankton,we conducted an examination using two commonly used plankton nets during the spring season in the Southern Yellow Sea(SYS).Our study revealed a total of 12 meroplankton groups,with 9 groups identified in the 505-μm mesh nets and 11 groups in the 160-μm mesh nets.The results demonstrated the superior collection efficiency of the 160-μm net compared to the 505-μm net across the majority of meroplankton groups.Furthermore,we focused on exploring the abundance,distribution patterns,and realized niches of meroplankton collected by the two mesh size nets,and observed that the distribution of meroplankton closely resembled the distribution of possible benthic adults in the SYS.Correlation analysis of the six dominant groups collected in the 160-μm mesh nets revealed that seawater temperature and salinity emerged as the key environmental factors driving variations in meroplankton abundance within the SYS.This study also found that a smaller mesh size net does not necessarily capture meroplankton more comprehensively.A comprehensive understanding of the ecological characteristics of meroplankton requires the combination of two types of nets for research.Our research significantly advances our understanding of the quantification,abundance,and distribution of meroplankton,serving as a valuable contribution to the broader landscape of detailed quantitative meroplankton studies.展开更多
High-energy nuclear collisions encompass three key stages:the structure of the colliding nuclei,informed by low-energy nuclear physics,the initial condition,leading to the formation of quark-gluon plasma(QGP),and the ...High-energy nuclear collisions encompass three key stages:the structure of the colliding nuclei,informed by low-energy nuclear physics,the initial condition,leading to the formation of quark-gluon plasma(QGP),and the hydrodynamic expansion and hadronization of the QGP,leading to fnal-state hadron distributions that are observed experimentally.Recent advances in both experimental and theoretical methods have ushered in a precision era of heavy-ion collisions,enabling an increasingly accurate understanding of these stages.However,most approaches involve simultaneously determining both QGP properties and initial conditions from a single collision system,creating complexity due to the coupled contributions of these stages to the fnal-state observables.To avoid this,we propose leveraging established knowledge of low-energy nuclear structures and hydrodynamic observables to independently constrain the QGP's initial condition.By conducting comparative studies of collisions involving isobar-like nuclei—species with similar mass numbers but diferent ground-state geometries—we can disentangle the initial condition's impacts from the QGP properties.This approach not only refnes our understanding of the initial stages of the collisions but also turns high-energy nuclear experiments into a precision tool for imaging nuclear structures,ofering insights that complement traditional low-energy approaches.Opportunities for carrying out such comparative experiments at the Large Hadron Collider and other facilities could signifcantly advance both highenergy and low-energy nuclear physics.Additionally,this approach has implications for the future electron-ion collider.While the possibilities are extensive,we focus on selected proposals that could beneft both the high-energy and low-energy nuclear physics communities.Originally prepared as input for the long-range plan of U.S.nuclear physics,this white paper refects the status as of September 2022,with a brief update on developments since then.展开更多
Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm...Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm.The array is divided into 16 subarrays,with pixels of 400 rows×32 columns per subarray.Each pixel incorporates two charge sensors:a diode sensor and a Topmetal sensor.The in-pixel circuit primarily consists of a charge-sensitive amplifier for energy measurements,a discriminator with a peak-holding circuit,and a time-to-amplitude converter for time-of-arrival measurements.The pixel of Topmetal-M2 has a charge input range of~0-3 k e-,a voltage output range of~0-180 mV,and a charge-voltage conversion gain of~59.56μV∕e-.The average equivalent noise charge of Topmetal-M2,which includes the readout electronic system noise,is~43.45 e-.In the scanning mode,the time resolution of Topmetal-M2 is 1 LSB=1.25μs,and the precision is^()7.41μs.At an operating voltage of 1.5 V,Topmetal-M2 has a power consumption of~49 mW∕cm~2.In this article,we provide a comprehensive overview of the chip architecture,pixel working principles,and functional behavior of Topmetal-M2.Furthermore,we present the results of preliminary tests conducted on Topmetal-M2,namely,alpha-particle and soft X-ray tests.展开更多
The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated sys...The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.展开更多
Many different factors,such as species traits,socio-economic factors,geographical and environmental factors,can lead to specimen collection preference.This study aims to determine whether grassland specimen collection...Many different factors,such as species traits,socio-economic factors,geographical and environmental factors,can lead to specimen collection preference.This study aims to determine whether grassland specimen collection in China is preferred by species traits(i.e.,plant height,flowering and fruiting period),environmental range(i.e.,the temperature and precipitation range)and geographical range(i.e.,distribution range and altitudinal range).Ordinary least squares models and phylogenetic generalized linear mixed models were used to analyze the relationships between specimen number and the explanatory variables.Random Forest models were then used to find the most parsimonious multivariate model.The results showed that interannual variation in specimen number between 1900 and 2020 was considerable.Specimen number of these species in southeast China was notably lower than that in northwest China.Environmental range and geographical range of species had significant positive correlations with specimen number.In addition,there were relatively weak but significant associations between specimen number and species trait(i.e.,plant height and flowering and fruiting period).Random Forest models indicated that distribution range was the most important variable,followed by flowering and fruiting period,and altitudinal range.These findings suggest that future floristic surveys should pay more attention to species with small geographical range,narrow environmental range,short plant height,and short flowering and fruiting period.The correction of specimen collection preference will also make the results of species distribution model,species evolution and other works based on specimen data more accurate.展开更多
The article by Ker et al explores the treatment of peripancreatic fluid collection(PFC).The use of percutaneous drainage,endoscopy,and surgery for managing PFC are discussed.Percutaneous drainage is noted for its low ...The article by Ker et al explores the treatment of peripancreatic fluid collection(PFC).The use of percutaneous drainage,endoscopy,and surgery for managing PFC are discussed.Percutaneous drainage is noted for its low risk profile,while endoscopic cystogastrostomy is more effective due to the wider orifice of the metallic stent.Surgical cystogastrostomy is a definitive treatment with a reduced need for reintervention,especially for cases with extensive collections and significant necrosis.The choice of treatment modality should be tailored to individual patient characteristics and disease factors,considering the expertise available.展开更多
To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used ...To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended.展开更多
Biological specimens are fundamental for taxonomy and flora/fauna research.More importantly,they also play crucial roles in recording environmental impacts on morphology and behavior,which is vital for biodiversity re...Biological specimens are fundamental for taxonomy and flora/fauna research.More importantly,they also play crucial roles in recording environmental impacts on morphology and behavior,which is vital for biodiversity research and conservation.However,there are few systematic studies on the patterns and drivers of bird specimen number at regional scales.This study is the first attempt to examine the relationships between bird specimen number and species traits as well as climate niche breadth in China,aiming to answer two questions:1)how do species’temperature niche breadth and precipitation niche breadth influence specimen number?2)which trait is most associated with bird specimen number?The associations between bird specimen number and explanatory variables were examined using ordinary least squares,generalized linear models,phylogenetic generalized linear mixed models,and multiple comparisons.The results showed that Muscicapidae was the family with the highest specimen number,and Passeriformes was the order with the highest specimen number.Bird specimen number significantly increased with larger temperature niche breadth and precipitation niche breadth.Specimen number was also positively associated with geographic range size,habitat specificity,hunting vulnerability and clutch size,but negatively associated with body size.These findings suggest that future bird specimen collection should pay more attention to birds with limited ecological niches,large body sizes,and small clutch sizes.This research enhances the use of bird specimen data to study and preserve biodiversity.展开更多
Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rota...Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rotation of epithelial cells confined in circular substrates.Here,we aim to explore how geometric shapes of confinement regulate this collective cell movement.We develop quantitative methods for cell velocity orientation analysis,and find that boundary cells exhibit stronger tangential ordering migration than inner cells in circular pattern.Furthermore,decreased tangential ordering movement capability of collective cells in triangular and square patterns are observed,due to the disturbance of cell motion at unsmooth corners of these patterns.On the other hand,the collective cell rotation is slightly affected by a convex defect of the circular pattern,while almost hindered with a concave defect,also resulting from different smoothness features of their boundaries.Numerical simulations employing cell Potts model well reproduce and extend experimental observations.Together,our results highlight the importance of boundary smoothness in the regulation of collective cell tangential ordering migration.展开更多
基金supported by the National Centre for the Replacement Refinement & Reduction of Animals in Research Crack It solution “Neuroinflammation and nociception in a dish”(https://nc3rs.org.uk/crackit/news/new-solutionneuroinflammation-and-nociception-dish) fund(to AM)。
文摘Mesenchymal stem cells(MSCs)are multipotent adult stem cells of mesodermal origin that can be isolated from various tissues,including bone marrow,tooth pulp,adipose tissue,and umbilical cord.MSCs have gained significant attention in regenerative medicine due to their ability to modulate the immune system and favor tissue repair.MSCs enrich the medium in which they are cultivated with a broad range of bioactive molecules,including growth factors,cytokines,chemokines,enzymes,nucleic acids,and extracellular vesicles that collectively compose the MSC secretome.An increasing number of pre-clinical studies suggest that delivering in vivo an MSC-conditioned medium(i.e.,the medium collected from MSC cultures after at least 3 days of exposure)exerts neuroprotective and anti-inflammatory effects in a variety of neurological conditions.
文摘2024年1月4日,在Web of Science网站以“cotton”或“Gossypium”为“Title”(文题)检索词查询“Web of Science Core Collection”和“Chinese Science Citation DatabaseSM”数据库中2023年发表文章,选择被引次数5及其以上文章68篇。
文摘This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 innovation design was proposed.Second,field-coupling theoretical models of sunlight concentration,photoelectric conversion,and transmitting antennas were established,and a systematic optimization design method was proposed.Third,a beam waveform optimization methodology considering both a high beam collection efficiency and a circular stepped beam shape was proposed.Fourth,a control strategy was developed to control the condenser pointing toward the sun while maintaining the transmitting antenna toward the rectenna.Fifth,a high-efficiency heat radiator design method based on bionics and topology optimization was proposed.Sixth,a method for improving the rectenna array’s reception,rectification,and direct current(DC)power synthesis efficiencies is presented.Seventh,high-precision measurement technology for high-accuracy beam-pointing control was developed.Eighth,a smart mechanical structure was designed and developed.Finally,the developed SSPS ground demonstration and verification system has the capacity for sun tracking,a high concentration ratio,photoelectric conversion,microwave conversion and emission,microwave reception,and rectification,and thus satisfactory results were obtained.
文摘Percutaneous or endoscopic drainage is the initial choice for the treatment of peripancreatic fluid collection in symptomatic patients.Endoscopic transgastric fenestration(ETGF)was first reported for the management of pancreatic pseu-docysts of 20 patients in 2008.From a surgeon’s viewpoint,ETGF is a similar procedure to cystogastrostomy in that they both produce a wide outlet orifice for the drainage of fluid and necrotic debris.ETGF can be performed at least 4 wk after the initial onset of acute pancreatitis and it has a high priority over the surgical approach.However,the surgical approach usually has a better success rate because surgical cystogastrostomy has a wider outlet(>6 cm vs 2 cm)than ETGF.However,percutaneous or endoscopic drainage,ETGF,and surgical approach offer various treatment options for peripancreatic fluid collection patients based on their conditions.
文摘Contrast-enhanced endoscopic ultrasound(CH-EUS)can overcome the limi-tations of endoscopic ultrasound-guided acquisition by identifying microvessels inside inhomogeneous tumours and improving the characterization of these tumours.Despite the initial enthusiasm that oriented needle sampling under CH-EUS guidance could provide better diagnostic yield in pancreatic solid lesions,further studies did not confirm the supplementary values in cases of tissue acquisition guided by CH-EUS.This review details the knowledge based on the available data on contrast-guided procedures.The indications for CH-EUS tissue acquisition include isoechoic EUS lesions with poor visible delineation where CH-EUS can differentiate the lesion vascularisation from the surrounding parenchyma and also the mural nodules within biliopancreatic cystic lesions,which occur in select cases.Additionally,the roles of CH-EUS-guided therapy in patients whose pancreatic fluid collections or bile ducts that have an echogenic content have indications for drainage,and patients who have nonvisualized vessels that need to be highlighted via Doppler EUS are presented.Another indication is represented if there is a need for an immediate assessment of the post-radiofrequency ablation of pancreatic neuroendocrine tumours,in which case CH-EUS can be used to reveal the incomplete tumour destruction.
基金Science and Technology Funds from the Liaoning Education Department(Serial Number:LJKZ0104).
文摘The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.
基金supported by National Key R&D Program of China(2018YFA0901700)National Natural Science Foundation of China(22278241)+1 种基金a grant from the Institute Guo Qiang,Tsinghua University(2021GQG1016)Department of Chemical Engineering-iBHE Joint Cooperation Fund.
文摘Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research.Effective progress has been made,attributed to advances in various fields such as supramolecular chemistry,biology and nanotechnology,and informatics.However,individual molecular machines are only capable of producing nanometer work and generally have only a single functionality.In order to address these problems,collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm.In this review,we comprehensively discuss recent developments in the collective behaviors of molecular machines.In particular,collective behavior is divided into two paradigms.One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials.The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations.We discuss design strategies for both modes and focus on the modulation of features and properties.Subsequently,in order to address existing challenges,the idea of transferring experience gained in the field of micro/nano robotics is presented,offering prospects for future developments in the collective behavior of molecular machines.
基金supported by Natural Science Foundation of Beijing(3212010)National Natural Science Foundation of China(51875031 and 52242507).
文摘1.Introduction With the implementation of modern production strategies,such as“Industry 4.0”and“Made in China 2025,”the development of high-end mechanical equipment is gradually reaching a high degree of parameterization,digitalization,networking,and intelligence[1].High-end mechanical equipment no longer consists of traditional single devices,but is closely linked to the overall production process;that is,a variety of devices interact with each other and collectively form a complex system.However,faults can lead to production delays throughout the system and even seriously threaten the safety of workers[2].In addition,equipment operating in unmanned air or space vehicles(including space robots)cannot be repaired by humans if they break down[3].Until recently,the typical method of addressing machine faults was primarily the“fault cure”method,which involves manually shutting down,inspecting,and repairing the equipment to restore normal operation.Accordingly,the maintenance cycle of the traditional“fault cure”method is time-consuming,and the quality of the maintenance depends on the skills of the technician[4].
基金supported by the National Natural Science Foundation of China(Grant Nos.62288101 and 62274086)the National Key R&D Program of China(Grant No.2021YFA0718802)the Jiangsu Outstanding Postdoctoral Program。
文摘Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics.
基金National Key Research and Development Program of China(No.2022YFA1604900)National Natural Science Foundation of China(No.12025501)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34000000)。
文摘In the paper,we discuss the development of the multigap resistive plate chamber time-of-fight(TOF)technology and the production of the solenoidal tracker at RHIC(STAR)TOF detector in China at the beginning of the twenty-frst century.Subsequently,recent experimental results from the frst beam energy scan program(BES-I)at the Relativistic Heavy Ion Collider(RHIC)pertaining to measurements of collectivity,chirality,criticality,global polarization,strangeness,heavy favor,dilepton and light nuclei productions are reviewed.
基金partially supported by the National Natural Science Foundation of China (Grant Nos. 0204131240 and 11575067)the Shenzhen Municipal Collaborative Innovation Technology ProgramInternational Science and Technology (S&T) Cooperation Project (Grant No. GJHZ20220913142609017)the “Fourteenth Five-Year Plan” Basic Technological Research Project (Grant No. JSZL2022XXXX001)。
文摘Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient(ITG) and trapped-electron-mode instabilities using newly developed far-forward collective scattering measurements within ohmic plasmas in the J-TEXT tokamak.The ITG mode is characterized by frequencies ranging from 30 to 100 k Hz and wavenumbers(k_(θρs)) less than 0.3. Beyond a critical plasma density threshold, the ITG mode undergoes a bifurcation, which is marked by a reduction in frequency and an enhancement in amplitude. Concurrently, enhancements in ion energy loss and degradation in confinement are observed. This ground-breaking discovery represents the first instance of direct experimental evidence that establishes a clear link between ITG instability and ion thermal transport.
基金Supported by the Laoshan Laboratory(Nos.LSKJ 202203700,LSKJ 202203704,LSKJ 202204005)the National Natural Science Foundation of China(NSFC)(Nos.42076166,42130411)the NSFC Ship Time Sharing Project(No.42149901)。
文摘Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and evaluate the influence of varying mesh sizes(505 and 160μm)on the sampling efficiency of meroplankton,we conducted an examination using two commonly used plankton nets during the spring season in the Southern Yellow Sea(SYS).Our study revealed a total of 12 meroplankton groups,with 9 groups identified in the 505-μm mesh nets and 11 groups in the 160-μm mesh nets.The results demonstrated the superior collection efficiency of the 160-μm net compared to the 505-μm net across the majority of meroplankton groups.Furthermore,we focused on exploring the abundance,distribution patterns,and realized niches of meroplankton collected by the two mesh size nets,and observed that the distribution of meroplankton closely resembled the distribution of possible benthic adults in the SYS.Correlation analysis of the six dominant groups collected in the 160-μm mesh nets revealed that seawater temperature and salinity emerged as the key environmental factors driving variations in meroplankton abundance within the SYS.This study also found that a smaller mesh size net does not necessarily capture meroplankton more comprehensively.A comprehensive understanding of the ecological characteristics of meroplankton requires the combination of two types of nets for research.Our research significantly advances our understanding of the quantification,abundance,and distribution of meroplankton,serving as a valuable contribution to the broader landscape of detailed quantitative meroplankton studies.
基金U.S.Department of Energy,Office of Science,Ofifce of Nuclear Physics,under Award or Contract No.DE-SC002418(JDB),DE-SC0024602(SH,JJ,CZ),DE-SC0004286(UH),DE-FG02-10ER41666(CL,WL),DE-SC0013365,DE-SC0024586 and DE-SC0023175(DL),DE-SC0011088(YL),DE-AC02-05CH11231(MP),DE-FG02-89ER40531(AT),DE-SC0012704(BS),DE-SC0021969 and DE-SC0024232(CS),DE-SC0023861(JN),DE-FG02-07ER41521(ZX)by National Science Foundation under grant number OAC-2103680(JN)+1 种基金by European Union(ERC,Initial Conditions),VILLUM FONDEN with grant no.00025462,and Danmarks Frie Forskningsfond(YZ)by FAPESP projects 2017/05685-2,2018/24720-6,and 2021/08465-9,project INCT-FNA Proc.~No.~464898/2014-5,and CAPES-Finance Code 001(ML)。
文摘High-energy nuclear collisions encompass three key stages:the structure of the colliding nuclei,informed by low-energy nuclear physics,the initial condition,leading to the formation of quark-gluon plasma(QGP),and the hydrodynamic expansion and hadronization of the QGP,leading to fnal-state hadron distributions that are observed experimentally.Recent advances in both experimental and theoretical methods have ushered in a precision era of heavy-ion collisions,enabling an increasingly accurate understanding of these stages.However,most approaches involve simultaneously determining both QGP properties and initial conditions from a single collision system,creating complexity due to the coupled contributions of these stages to the fnal-state observables.To avoid this,we propose leveraging established knowledge of low-energy nuclear structures and hydrodynamic observables to independently constrain the QGP's initial condition.By conducting comparative studies of collisions involving isobar-like nuclei—species with similar mass numbers but diferent ground-state geometries—we can disentangle the initial condition's impacts from the QGP properties.This approach not only refnes our understanding of the initial stages of the collisions but also turns high-energy nuclear experiments into a precision tool for imaging nuclear structures,ofering insights that complement traditional low-energy approaches.Opportunities for carrying out such comparative experiments at the Large Hadron Collider and other facilities could signifcantly advance both highenergy and low-energy nuclear physics.Additionally,this approach has implications for the future electron-ion collider.While the possibilities are extensive,we focus on selected proposals that could beneft both the high-energy and low-energy nuclear physics communities.Originally prepared as input for the long-range plan of U.S.nuclear physics,this white paper refects the status as of September 2022,with a brief update on developments since then.
基金supported by the National Key Research and Development Program of China(No.2020YFE0202002)the National Natural Science Foundation of China(Nos.11875146 and U1932143)。
文摘Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm.The array is divided into 16 subarrays,with pixels of 400 rows×32 columns per subarray.Each pixel incorporates two charge sensors:a diode sensor and a Topmetal sensor.The in-pixel circuit primarily consists of a charge-sensitive amplifier for energy measurements,a discriminator with a peak-holding circuit,and a time-to-amplitude converter for time-of-arrival measurements.The pixel of Topmetal-M2 has a charge input range of~0-3 k e-,a voltage output range of~0-180 mV,and a charge-voltage conversion gain of~59.56μV∕e-.The average equivalent noise charge of Topmetal-M2,which includes the readout electronic system noise,is~43.45 e-.In the scanning mode,the time resolution of Topmetal-M2 is 1 LSB=1.25μs,and the precision is^()7.41μs.At an operating voltage of 1.5 V,Topmetal-M2 has a power consumption of~49 mW∕cm~2.In this article,we provide a comprehensive overview of the chip architecture,pixel working principles,and functional behavior of Topmetal-M2.Furthermore,we present the results of preliminary tests conducted on Topmetal-M2,namely,alpha-particle and soft X-ray tests.
基金This study was supported by the National Natural Science Foundation ofChina(Nos.12147106,12175072,and 11722546)the Talent Programof South China University of Technology(No.20210115).
文摘The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.
基金the Natural Science Foundation of Inner Mongolia,China(2023JQ01)the National Key R&D Program of China(2019YFA0607103)+2 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2022ZY0224)the Open Project Program of Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau,Hohhot,Inner Mongolia,China(KF2023003)Major Science and Technology Project of Inner Mongolia Autonomous Region:Monitoring,Assessment and Early Warning Technology Research of Biodiversity in Inner Mongolia(2021ZD0011)for financial support.
文摘Many different factors,such as species traits,socio-economic factors,geographical and environmental factors,can lead to specimen collection preference.This study aims to determine whether grassland specimen collection in China is preferred by species traits(i.e.,plant height,flowering and fruiting period),environmental range(i.e.,the temperature and precipitation range)and geographical range(i.e.,distribution range and altitudinal range).Ordinary least squares models and phylogenetic generalized linear mixed models were used to analyze the relationships between specimen number and the explanatory variables.Random Forest models were then used to find the most parsimonious multivariate model.The results showed that interannual variation in specimen number between 1900 and 2020 was considerable.Specimen number of these species in southeast China was notably lower than that in northwest China.Environmental range and geographical range of species had significant positive correlations with specimen number.In addition,there were relatively weak but significant associations between specimen number and species trait(i.e.,plant height and flowering and fruiting period).Random Forest models indicated that distribution range was the most important variable,followed by flowering and fruiting period,and altitudinal range.These findings suggest that future floristic surveys should pay more attention to species with small geographical range,narrow environmental range,short plant height,and short flowering and fruiting period.The correction of specimen collection preference will also make the results of species distribution model,species evolution and other works based on specimen data more accurate.
文摘The article by Ker et al explores the treatment of peripancreatic fluid collection(PFC).The use of percutaneous drainage,endoscopy,and surgery for managing PFC are discussed.Percutaneous drainage is noted for its low risk profile,while endoscopic cystogastrostomy is more effective due to the wider orifice of the metallic stent.Surgical cystogastrostomy is a definitive treatment with a reduced need for reintervention,especially for cases with extensive collections and significant necrosis.The choice of treatment modality should be tailored to individual patient characteristics and disease factors,considering the expertise available.
基金Beijing Nova Program under Grant No.2022036National Key Research and Development Program under Grant No.2019YFC1521000。
文摘To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended.
基金supported by the Natural Science Foundation of Inner Mongolia,China(2023JQ01)the National Key R&D Program of China(2019YFA0607103)+2 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2022ZY0224)the Open Project Program of’Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau(KF2023003)’the Major Science and Technology Project of Inner Mongolia Autonomous Region:Monitoring,Assessment and Early Warning Technology Research of Biodiversity in Inner Mongolia(2021ZD0011)。
文摘Biological specimens are fundamental for taxonomy and flora/fauna research.More importantly,they also play crucial roles in recording environmental impacts on morphology and behavior,which is vital for biodiversity research and conservation.However,there are few systematic studies on the patterns and drivers of bird specimen number at regional scales.This study is the first attempt to examine the relationships between bird specimen number and species traits as well as climate niche breadth in China,aiming to answer two questions:1)how do species’temperature niche breadth and precipitation niche breadth influence specimen number?2)which trait is most associated with bird specimen number?The associations between bird specimen number and explanatory variables were examined using ordinary least squares,generalized linear models,phylogenetic generalized linear mixed models,and multiple comparisons.The results showed that Muscicapidae was the family with the highest specimen number,and Passeriformes was the order with the highest specimen number.Bird specimen number significantly increased with larger temperature niche breadth and precipitation niche breadth.Specimen number was also positively associated with geographic range size,habitat specificity,hunting vulnerability and clutch size,but negatively associated with body size.These findings suggest that future bird specimen collection should pay more attention to birds with limited ecological niches,large body sizes,and small clutch sizes.This research enhances the use of bird specimen data to study and preserve biodiversity.
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rotation of epithelial cells confined in circular substrates.Here,we aim to explore how geometric shapes of confinement regulate this collective cell movement.We develop quantitative methods for cell velocity orientation analysis,and find that boundary cells exhibit stronger tangential ordering migration than inner cells in circular pattern.Furthermore,decreased tangential ordering movement capability of collective cells in triangular and square patterns are observed,due to the disturbance of cell motion at unsmooth corners of these patterns.On the other hand,the collective cell rotation is slightly affected by a convex defect of the circular pattern,while almost hindered with a concave defect,also resulting from different smoothness features of their boundaries.Numerical simulations employing cell Potts model well reproduce and extend experimental observations.Together,our results highlight the importance of boundary smoothness in the regulation of collective cell tangential ordering migration.