Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generat...Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research.Effective progress has been made,attributed to advances in various fields such as supramolecular chemistry,biology and nanotechnology,and informatics.However,individual molecular machines are only capable of producing nanometer work and generally have only a single functionality.In order to address these problems,collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm.In this review,we comprehensively discuss recent developments in the collective behaviors of molecular machines.In particular,collective behavior is divided into two paradigms.One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials.The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations.We discuss design strategies for both modes and focus on the modulation of features and properties.Subsequently,in order to address existing challenges,the idea of transferring experience gained in the field of micro/nano robotics is presented,offering prospects for future developments in the collective behavior of molecular machines.展开更多
To solve the problem of excavation face dust control,the theory of dust removal after collection was put forward.Through a large number of theoretical and experimental researches,a new wind screen dust-collection syst...To solve the problem of excavation face dust control,the theory of dust removal after collection was put forward.Through a large number of theoretical and experimental researches,a new wind screen dust-collection system which was applied to comprehen- sive excavation face was developed.To set a wind dam in jet stream box,achieve the function of multi-stage and multiple-level regulation,lots of experimentation was carried out to obtain higher jet stream velocity with the minimum loss of energy.Experiments show that the slit width in the exports of wind screen dust-collection system should be 10 to 15 mm.For the general excavation roadway,after wind attenuation,the velocity can be greater than 3 m/s at the roof which meets the requirements of respirable dust control.展开更多
Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis ...Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis wind turbine(SB-VAWT) with or without pitch control was conducted from the aspects of aerodynamic force,flow structure and power coefficient.The computational fluid dynamics(CFD) prediction results show a significant increase in power coefficient for SB-VAWT with pitch control.According to the aerodynamic forces and total torque coefficient obtained at various tip speed ratios(TSRs),the results indicate that the blade pitch method can increase the power output and decrease the deformation of blade;especially,the total torque coefficient of blade pitch control at TSR 1.5 is about 2.5 times larger than that of fixed pitch case.Furthermore,experiment was carried out to verify the feasibility of pitch control methods.The results show that the present collective pitch control and individual pitch control methods can improve the self-starting capacity of SB-VAWT,and the former is much better and its proper operating TSRs ranges from 0.4 to 0.6.展开更多
It is essential for cross-regional control and treatment of major epidemics to establish a collaborative,efficient,and precise collective response mechanism.Based on the observation of the COVID-19 epidemic,this paper...It is essential for cross-regional control and treatment of major epidemics to establish a collaborative,efficient,and precise collective response mechanism.Based on the observation of the COVID-19 epidemic,this paper concludes major measures and experience of cross-regional collective response for epidemic control and treatment,compares the difference between localities at home and abroad,and puts forwards major strategies for a cross-regional collective response,hoping to provide policy-making references to improve the modernization level of public health,epidemic prevention,and emergency management in China.展开更多
Industrial coal-fired boiler is an important air pollutant emission source in China. The chain-grate boiler is the most extensively used type of industrial coal-fired boiler. An electrical low-pressure impactor, and a...Industrial coal-fired boiler is an important air pollutant emission source in China. The chain-grate boiler is the most extensively used type of industrial coal-fired boiler. An electrical low-pressure impactor, and a Dekati? Low Pressure Impactor were applied to determine mass and number size distributions of PM10 at the inlet and the outlet of the particulate emission control devices at six coalfired chain-grate boilers. The mass size distribution of PM10 generated from coal-fired chain-grate boilers generally displays a bimodal distribution that contains a submicron mode and a coarse mode. The PM in the submicron mode for burning with raw coal contributes to 33% ± 10 % of PM10 emissions, much higher than those for pulverized boilers. And the PM in the submicron mode for burning with briquette contributes up to 86 % of PM10 emissions. Multiclones and scrubbers are not efficient for controlling PM10 emission. Their average collection efficiencies for sub-micron particle and super-micron particle are 34% and 78%, respectively. Operating conditions of industrial steam boilers have influence on PM generation. Peak of the submicron mode during normal operation period is larger than the start-up period.展开更多
基金supported by National Key R&D Program of China(2018YFA0901700)National Natural Science Foundation of China(22278241)+1 种基金a grant from the Institute Guo Qiang,Tsinghua University(2021GQG1016)Department of Chemical Engineering-iBHE Joint Cooperation Fund.
文摘Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research.Effective progress has been made,attributed to advances in various fields such as supramolecular chemistry,biology and nanotechnology,and informatics.However,individual molecular machines are only capable of producing nanometer work and generally have only a single functionality.In order to address these problems,collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm.In this review,we comprehensively discuss recent developments in the collective behaviors of molecular machines.In particular,collective behavior is divided into two paradigms.One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials.The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations.We discuss design strategies for both modes and focus on the modulation of features and properties.Subsequently,in order to address existing challenges,the idea of transferring experience gained in the field of micro/nano robotics is presented,offering prospects for future developments in the collective behavior of molecular machines.
基金the National Natural Science Foundation of China(f010206)
文摘To solve the problem of excavation face dust control,the theory of dust removal after collection was put forward.Through a large number of theoretical and experimental researches,a new wind screen dust-collection system which was applied to comprehen- sive excavation face was developed.To set a wind dam in jet stream box,achieve the function of multi-stage and multiple-level regulation,lots of experimentation was carried out to obtain higher jet stream velocity with the minimum loss of energy.Experiments show that the slit width in the exports of wind screen dust-collection system should be 10 to 15 mm.For the general excavation roadway,after wind attenuation,the velocity can be greater than 3 m/s at the roof which meets the requirements of respirable dust control.
基金Project (E201216) supported by Heilongjiang Provincial Natural Science Foundation,China
文摘Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis wind turbine(SB-VAWT) with or without pitch control was conducted from the aspects of aerodynamic force,flow structure and power coefficient.The computational fluid dynamics(CFD) prediction results show a significant increase in power coefficient for SB-VAWT with pitch control.According to the aerodynamic forces and total torque coefficient obtained at various tip speed ratios(TSRs),the results indicate that the blade pitch method can increase the power output and decrease the deformation of blade;especially,the total torque coefficient of blade pitch control at TSR 1.5 is about 2.5 times larger than that of fixed pitch case.Furthermore,experiment was carried out to verify the feasibility of pitch control methods.The results show that the present collective pitch control and individual pitch control methods can improve the self-starting capacity of SB-VAWT,and the former is much better and its proper operating TSRs ranges from 0.4 to 0.6.
文摘It is essential for cross-regional control and treatment of major epidemics to establish a collaborative,efficient,and precise collective response mechanism.Based on the observation of the COVID-19 epidemic,this paper concludes major measures and experience of cross-regional collective response for epidemic control and treatment,compares the difference between localities at home and abroad,and puts forwards major strategies for a cross-regional collective response,hoping to provide policy-making references to improve the modernization level of public health,epidemic prevention,and emergency management in China.
基金Acknowledgements This study was supported by the National Natural Science Foundation of China (Grant Nos. 41275121 and 41575119) and the National Key Basic Research and Development Program of China (No. 2013CB228505) and Beijing Municipal Science & Technology Commission (Grant No. Z161100000716004).
文摘Industrial coal-fired boiler is an important air pollutant emission source in China. The chain-grate boiler is the most extensively used type of industrial coal-fired boiler. An electrical low-pressure impactor, and a Dekati? Low Pressure Impactor were applied to determine mass and number size distributions of PM10 at the inlet and the outlet of the particulate emission control devices at six coalfired chain-grate boilers. The mass size distribution of PM10 generated from coal-fired chain-grate boilers generally displays a bimodal distribution that contains a submicron mode and a coarse mode. The PM in the submicron mode for burning with raw coal contributes to 33% ± 10 % of PM10 emissions, much higher than those for pulverized boilers. And the PM in the submicron mode for burning with briquette contributes up to 86 % of PM10 emissions. Multiclones and scrubbers are not efficient for controlling PM10 emission. Their average collection efficiencies for sub-micron particle and super-micron particle are 34% and 78%, respectively. Operating conditions of industrial steam boilers have influence on PM generation. Peak of the submicron mode during normal operation period is larger than the start-up period.