期刊文献+
共找到896篇文章
< 1 2 45 >
每页显示 20 50 100
Dynamics and control of a solar collector system for near Earth object deflection
1
作者 Shen-Ping Gong,Jun-Feng Li and Yun-Feng Gao School of Aerospace,Tsinghua University,Beijing 100084,China 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2011年第2期205-224,共20页
A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects.We investigate the dynamics and control of a solar collector system including a main collector (MC) an... A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects.We investigate the dynamics and control of a solar collector system including a main collector (MC) and secondary collector (SC).The MC is used to collect the sunlight to its focal point,where the SC is placed and directs the collected light to an asteroid.Both the relative position and attitude of the two collectors should be accurately controlled to achieve the desired optical path.First,the dynamical equation of the relative motion of the two collectors in the vicinity of the asteroid is modeled.Secondly,the nonlinear sliding-mode method is employed to design a control law to achieve the desired configuration of the two collectors.Finally,the deflection capability of this solar collector system is compared with those of the gravitational tractor and solar sail gravitational tractor.The results show that the solar collector is much more efficient with respect to deflection capability. 展开更多
关键词 minor planets asteroids -- techniques: miscellaneous -- solar collector
下载PDF
Revisiting aluminum current collector in lithium-ion batteries:Corrosion and countermeasures
2
作者 Shanglin Yang Jinyan Zhong +1 位作者 Songmei Li Bin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期610-634,I0014,共26页
With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary m... With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary materials,such as current collector corrosion,should not be disregarded.Therefore,it is necessary to conduct a comprehensive review in this field.In this review,from the perspectives of electrochemistry and materials,we systematically summarize the corrosion behavior of aluminum cathode current collector and propose corresponding countermeasures.Firstly,the corrosion type is clarified based on the properties of passivation layers in different organic electrolyte components.Furthermore,a thoroughgoing analysis is presented to examine the impact of various factors on aluminum corrosion,including lithium salts,organic solvents,water impurities,and operating conditions.Subsequently,strategies for electrolyte and protection layer employed to suppress corrosion are discussed in detail.Lastly and most importantly,we provide insights and recommendations to prevent corrosion of current collectors,facilitate the development of advanced current collectors and the implementation of next-generation high-voltage stable LIBs. 展开更多
关键词 Lithium-ion battery Aluminum current collector CORROSION Electrochemical performance ELECTROLYTE Protective layer
下载PDF
The Effects of the Geometry of a Current Collector with an Equal Open Ratio on Output Power of a Direct Methanol Fuel Cell
3
作者 Yingli Zhu Jiachi Xie +2 位作者 Mingwei Zhu Jun Zhang Miaomiao Li 《Energy Engineering》 EI 2024年第5期1161-1172,共12页
The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too ... The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too little attention has been given to how geometry(including the shape and feature size of the flow field)affects a current collector with an equal open ratio.In this paper,perforated and parallel current collectors with an equal open ratio of 50%and different feature sizes are designed,and the corresponding experimental results are shown to explain the geometry effects on the output power of the DMFC.The results indicate that the optimal feature sizes are between 2 and 2.5 mm for both perforated and parallel flow field in the current collectors with an equal open ratio of 50%.This means that for passive methanol fuel cells,to achieve the highest output power,the optimal feature size of the flow field in both anode and cathode current collectors is between 2 and 2.5 mm under the operating mode of this experiment.The effects of rib and channel position are also investigated,and the results indicate that the optimum pattern depends on the feature sizes of the flow field. 展开更多
关键词 Direct methanol fuel cell GEOMETRY open ratio current collector POSITION
下载PDF
Improving Heat Transfer in Parabolic Trough Solar Collectors by Magnetic Nanofluids
4
作者 Ritesh Singh Abhishek Gupta +2 位作者 Akshoy Ranjan Paul Bireswar Paul Suvash C.Saha 《Energy Engineering》 EI 2024年第4期835-848,共14页
A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC... A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid. 展开更多
关键词 Parabolic trough solar collector(PTSC) magnetic nanofluid(MNF) heat transfer convective heat transfer coefficient(HTC) thermal enhancement factor(TEF)
下载PDF
Applying Power Margin Tracking Droop Control to Flexible Operation in Multi-terminal DC Collector Systems of Renewable Generation
5
作者 Shiyi Zhang Ming Zhou Gengyin Li 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第6期1176-1186,共11页
An emerging multi-terminal looped DC(MTDC)collector system is now advocated for collecting and transferring large-scale renewable generation.However,it remains an open question as to improving the cooperative control ... An emerging multi-terminal looped DC(MTDC)collector system is now advocated for collecting and transferring large-scale renewable generation.However,it remains an open question as to improving the cooperative control capability of looped converter stations for flexible and robust response to renewable grid-connection fluctuation.This paper addresses this problem with a novel Power Margin Tracking(PMT)droop control and its corresponding system-level control strategy from the perspective of optimal dispatch of the power system.By introducing a power margin correction factor into the droop coefficient,the converter station can make self-adaptive regulations according to its actual available power margin.For operation verification,a multi-period optimal operation model and a four-terminal simulation model is built to provide optimal control parameters and real-time operation states of converter stations,where the power flow model of the looped MTDC grid with renewables generation is considered.The case results prove that the proposed control strategy can improve the cooperative operation capability of multiple converter stations,mitigating grid-connected power fluctuation.It can effectively reduce the DC voltage deviation to enhance the operation stability of the MTDC grid.The operational robustness of the proposed control strategy under“N−1”fault cases is verified as well. 展开更多
关键词 Cooperative control optimization DC voltage stability high share of renewable energy penetration looped MTDC collector system PMT droop control strategy
原文传递
An in situ ATR-FTIR study of mixed collectors BHA/DDA adsorption in ilmenite-titanaugite flotation system 被引量:4
6
作者 Liping Luo Houqin Wu +5 位作者 Longhua Xu Jinping Meng Jiahui Lu Huan Zhou Xiaomei Huo Lingyun Huang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期689-697,共9页
This paper researched the enhanced flotation separation performance of ilmenite and titanaugite using the mixed collector benzhydroxamic acid/dodecylamine(BHA/DDA).The interface assembly mechanism was mainly investiga... This paper researched the enhanced flotation separation performance of ilmenite and titanaugite using the mixed collector benzhydroxamic acid/dodecylamine(BHA/DDA).The interface assembly mechanism was mainly investigated through in situ attenuated total reflectance Fourier transform infrared(ATRFTIR)spectroscopy combined with the two-dimensional correlation spectroscopy(2D-COS)and X-ray photoelectron spectroscopy(XPS).It has been found that BHA/DDA mixed collectors successfully separate ilmenite from titanaugite at a molar ratio of 8:1.Zeta potential experiments suggested that,in the presence of mixed collector system,the BHA-DDA complex adsorbed on the ilmenite surface via the chemically adsorbed BHA and the electrostatically adsorbed DDA,however,the complex adsorbed on the surface of titanaugite unstably.According to in situ ATR-FTIR combined with 2D-COS and XPS results,the interface assembly mechanism of BHA/DDA is summarized as:the function group of BHA molecules first binds to the metal sites on minerals to form bidentate ligand,then DDA co-adsorbed with BHA on the surface of minerals through hydrogen bonding.DDA may change the adsorption modes of some BHA on the ilmenite surface from four-membered ring to five-membered ring,while the modes on the titanaugite surface is true opposite.Finally,recommended adsorption configurations of the BHA/DDA complex on the two mineral surfaces are proposed. 展开更多
关键词 ILMENITE Titanaugite Mixed collector FLOTATION ADSORPTION
下载PDF
Recent Advances in Structural Optimization and Surface Modification on Current Collectors for High‑Performance Zinc Anode:Principles,Strategies,and Challenges 被引量:3
7
作者 Yuxin Gong Bo Wang +4 位作者 Huaizheng Ren Deyu Li Dianlong Wang Huakun Liu Shixue Dou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期317-348,共32页
The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,th... The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs. 展开更多
关键词 Zinc anodes Current collectors Surface modification Structural design Crystal facet orientation
下载PDF
Status and Opportunities of Zinc Ion Hybrid Capacitors: Focus on Carbon Materials, Current Collectors, and Separators 被引量:3
8
作者 Yanyan Wang Shirong Sun +2 位作者 Xiaoliang Wu Hanfeng Liang Wenli Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期73-111,共39页
Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applic... Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs. 展开更多
关键词 Zinc ion hybrid capacitors Carbon materials Carbon cathode Current collectors SEPARATORS
下载PDF
A novel cationic collector for silicon removal from collophane using reverse flotation under acidic conditions 被引量:2
9
作者 Zhongxian Wu Dongping Tao +2 位作者 Youjun Tao Man Jiang Patrick Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1038-1047,共10页
We analyzed a novel cationic collector using chemical plant byproducts,such as cetyltrimethylammonium bromide(CTAB)and dibutyl phthalate(DBP).Our aim is to establish a highly effective and economical process for the r... We analyzed a novel cationic collector using chemical plant byproducts,such as cetyltrimethylammonium bromide(CTAB)and dibutyl phthalate(DBP).Our aim is to establish a highly effective and economical process for the removal of quartz from collophane.A microflotation test with a 25 mg·L^(−1)collector at pH value of 6-10 demonstrates a considerable difference in the floatability of pure quartz and fluorapatite.Flotation tests for a collophane sample subjected to the first reverse flotation for magnesium removal demonstrates that a rough flotation process(using a 0.4 kg·t−1 new collector at pH=6)results in a collophane concentrate with 29.33wt%P_(2)O_(5)grade and 12.66wt%SiO2 at a 79.69wt%P_(2)O_(5)recovery,providing desirable results.Mechanism studies using Fourier transform infrared spectroscopy,zeta potential,and contact angle measurements show that the adsorption capacity of the new collector for quartz is higher than that for fluorapatite.The synergistic effect of DBP increases the difference in hydrophobicity between quartz and fluorapatite.The maximum defoaming rate of the novel cationic collector reaches 142.8 mL·min−1.This is considerably higher than that of a conventional cationic collector. 展开更多
关键词 cationic collector collophane DEFOAMING QUARTZ reverse flotation
下载PDF
Novel polyhydroxy cationic collector N-(2,3-propanediol)-Ndodecylamine: Synthesis and flotation performance to hematite and quartz 被引量:1
10
作者 Wenbao Liu Xiangyu Peng +5 位作者 Wengang Liu Kelin Tong Yanbai Shen Qiang Zhao Sikai Zhao Wenhan Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期115-122,共8页
To enhance the performance of traditional cationic collector,a novel polyhydroxy amine collector N-(2,3-Propanediol)-N-dodecylamine(PDDA)was designed by introducing one propylene glycol group into dodecylamine(DDA).It... To enhance the performance of traditional cationic collector,a novel polyhydroxy amine collector N-(2,3-Propanediol)-N-dodecylamine(PDDA)was designed by introducing one propylene glycol group into dodecylamine(DDA).It was prepared by a nucleophilic substitution reaction,which showed better solubility and hydrophobicity than DDA and was firstly employed as the collector for the separation of hematite and quartz.Flotation tests showed that PDDA had an excellent flotation performance and significantly better selectivity than DDA.In addition,the flotation performance and adsorption mechanism of PDDA on hematite and quartz surfaces were studied using Fourier transform infrared spectroscopy(FTIR),zeta potential and X-ray photoelectron spectroscopy(XPS)tests.These results demonstrated that the interaction between PDDA and the minerals’surfaces was mainly electrostatic adsorption and hydrogen bond,while PDDA tended to adsorb on the surfaces of quartz more than that of hematite.Performance optimization of amine collectors by introducing hydroxyl was also verified,which was of great meaning to the design,development,and application of the polyhydroxy cationic collector.In conclusion,PDDA could be used as a potential collector in the flotation separation of quartz and hematite. 展开更多
关键词 Polyhydroxy collector QUARTZ HEMATITE Interaction mechanism Hydrogen bonding
下载PDF
Distribution behavior of collector in the desilication system of bauxite flotation
11
作者 JIANG Yu ren,XUE Yu lan,CAO Xue feng,XIA Zhong (Department of Mineral Engineering,Central South University, Changsha 410083,China) 《Journal of Central South University of Technology》 2001年第2期125-129,共5页
The distribution behavior of the HZB collector (a kind of long chain fatty acid) in the desilication system of bauxite flotation was studied. The results show that the collector tends towards froth products in the ste... The distribution behavior of the HZB collector (a kind of long chain fatty acid) in the desilication system of bauxite flotation was studied. The results show that the collector tends towards froth products in the steps of the roughing, the first cleaning and the second cleaning, while towards the tailing product in the step of the scavenging, and in each job except scavenging the collector is mainly on the surface of solids. As for the froth product in the step of the scavenging, it is mainly in solution. To the tailing products of every step, it is mainly in the respective solutions. The collector added to the flotation system is mainly taken out by the last concentrate, by which the taken one occupies 65.2% of the whole, among which, 57.8% is by solid and 7.4% by solution, respectively. And the one by the last tail occupies 34.8% of the whole, among which, 8.8% is by solid and 26.0% by solution, respectively. The sum of the collector in the solution of the last concentrate and tailing is 33.4% of the amount of addition collector, and recycling the solutions will be in favor of decreasing the dosage of collector. 展开更多
关键词 distribution of collector DESILICATION flotation of bauxite
下载PDF
Configuration and Setting of Protections for Wind Farm Collector System
12
作者 Li Yanbin Zhang Li +2 位作者 Bi Tianshu Cao Hong Liu Sumei 《Electricity》 2014年第5期44-50,共7页
Compared with traditional synchronous generators, wind turbine generators are different in electricity generation principles, control modes and integration topologies, which makes their fault characteristics change a ... Compared with traditional synchronous generators, wind turbine generators are different in electricity generation principles, control modes and integration topologies, which makes their fault characteristics change a lot. This, consequently, brings challenges regarding the behavior of protections for wind farm collector systems. In this paper, based on a practical wind farm, configuration and setting of relay protections for such a collector system is analyzed and determined systematically in consideration of the selectivity and sensitivity of the protections. Results show that misoperation of overcurrent relay and zero sequence overcurrent relay of the non-fault collector line occurs, and bus differential relay of collector bus cannot remove the single-phase-to-ground fault. In order to solve the problems, a novel substation-area protection for collector system is proposed and its operation mechanism is discussed. 展开更多
关键词 CONFIGURATION SETTING protective RELAY collector s
原文传递
Solar Thermal Systems Performances versus Flat Plate Solar Collectors Connected in Series
13
作者 Khaled Zelzouli Amenallah Guizani +1 位作者 Ramzi Sebai Chakib Kerkeni 《Engineering(科研)》 2012年第12期881-893,共13页
This paper shows the modeling of a solar collective heating system in order to predict the system performances. Two systems are proposed: 1) the first, Solar Direct Hot Water, which is composed of flat plate collector... This paper shows the modeling of a solar collective heating system in order to predict the system performances. Two systems are proposed: 1) the first, Solar Direct Hot Water, which is composed of flat plate collectors and thermal storage tank, 2) the second, a Solar Indirect Hot Water in which we added an external heat exchanger of constant effectiveness to the first system. The mass flow rate by a collector is fixed to 0.04 Kg·s–1 and the total number of collectors is adjusted to 60. For the first system, the maximum average water temperature within the tank in a typical day in summer and annual performances are calculated by varying the number of collectors connected in series. For the second, this paper shows the detailed analysis of water temperature within the storage and annual performances by varying the mass flow rate on the cold side of the heat exchanger and the number of collectors in series on the hot side. It is shown that the stratification within the storage is strongly influenced by mass flow rate and the connections between collectors. It is also demonstrated that the number of collectors that can be connected in series is limited. The optimization of the mass flow rate on cold side of the heat exchanger is seen to be an important factor for the energy saving. 展开更多
关键词 Thermal Energy FLAT Plate collectors STRATIFICATION Solar HEATING systems
下载PDF
Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System
14
作者 Nawaf H. Saeid Tan Jun Wong 《Engineering(科研)》 2010年第10期832-840,共9页
Parametric study is carried out in the present article to investigate the unsteady performance of solar energy gain and heat retention of two different integrated-collector-storage systems. The systems are the convent... Parametric study is carried out in the present article to investigate the unsteady performance of solar energy gain and heat retention of two different integrated-collector-storage systems. The systems are the conventional rectangular-shaped storage tank and the modified tank shaped as rectangular cuboid with one semi -circular top. The two systems have the same absorber surface area and volume for water. The heat and fluid flow is assumed to be unsteady, two-dimensional, laminar and incompressible. The performances of the two systems are evaluated based on the maximum temperature in the system during daytime heating period and nighttime cooling period. For comprehensive study, 24 hours simulations for 3 cases with different wall boundary condition impose on the absorber plate are investigated. The simulation results show that the modified system has better heat retain than the conventional system. Periodic variations of both systems are investigated, and it is found that both systems show consistent results on different days. The modified system is able to store most of the thermal energy in the semi-circular top region with higher temperature than that of the conventional system. 展开更多
关键词 Heat Transfer INTEGRATED Solar collector Storage BUOYANCY Driven Flow Numerical Study
下载PDF
Ethylenediamine tetramethylenephosphonic acid as a selective collector for the improved separation of chalcopyrite against pyrite at low alkalinity
15
作者 Jianjun Wang Gaogui Jing +3 位作者 Renji Zheng Zijie Huang Wei Sun Zhiyong Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期873-882,共10页
Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment a... Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment and associated precious metals recovery. Therefore, in this study, the green and odourless ethylenediamine tetramethylenephosphonic acid(EDTMPA) was introduced as a novel chalcopyrite collector. Flotation results from the binary mineral mixture and real ore demonstrated that EDTMPA could realize the selective separation of chalcopyrite from pyrite relative to ethyl xanthate(EX) without any depressants within the wide p H range of 6.0–11.0, and might replace the traditional high-alkaline lime process. Electrochemical and Fourier transform infrared spectra measurements indicated that the difference in adsorption performance of EDTMPA on chalcopyrite and pyrite was larger than that of EX, suggesting a better selectivity for EDTMPA. Density functional theory calculations demonstrated that there were stronger chemical bonds between P—O groups of EDTMPA and the Fe/Cu atoms on chalcopyrite in the form of a stable six-membered ring. Crystal chemistry calculations further revealed that the activity of metal atoms of chalcopyrite was higher than that of pyrite. Therefore, these basic theoretical results and practical application provide a guidance for the industrial application of EDTMPA in chalcopyrite flotation. 展开更多
关键词 CHALCOPYRITE PYRITE Flotation Ethylenediamine tetramethylenephosphonic acid collector
下载PDF
Removal of dolomite and potassium feldspar from apatite using simultaneous flotation with a mixed cationic-anionic collector
16
作者 Haoyong Yu Yangge Zhu +2 位作者 Liang Lu Xiaoxing Hu Songqing Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期783-791,共9页
This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,s... This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,several experimental methods,including flotation experiments,zeta-potential detection,microcalorimetry detection,XPS analysis and FTIR measurements,were used.The flotation tests showed that dolomite and potassium feldspar can be successfully removed from apatite simultaneously when the molar ratio of DTAB to NaOL was 2:1 with pH 4.5.Zeta-potential and microcalorimetry detection suggested that NaOL and DTAB were adsorbed on the surface of dolomite and potassium feldspar respectively,and part of NaOL and DTAB formed co-adsorption on the surface of potassium feldspar to enhance the floatability of potassium feldspar.The XPS and FTIR spectra analysis demonstrated that the cationic collector,DTAB,was first adsorbed on the surface of potassium feldspar through electrostatic attraction in the DTAB/NaOL mixture system.Subsequently,the anionic NaOL collector and cationic DTAB collector form an electron neutralisation complex,thereby resulting in co-adsorption on the surface of potassium feldspar.NaOL was chemically reacted and adsorbed on dolomite surface,but almost no collector was adsorbed on apatite surface.Finally,the adsorption models of different collectors on mineral surface were obtained. 展开更多
关键词 FLOTATION Mixed collectors APATITE Potassium feldspar DOLOMITE
下载PDF
A pre-strain strategy of current collectors for suppressing electrode debonding in lithium-ion batteries
17
作者 Bo RUI Bo LU +1 位作者 Yicheng SONG Junqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期547-560,共14页
The interfacial debonding between the active layer and the current collector has been recognized as a critical mechanism for battery fading,and thus has attracted great efforts focused on the related analyses.However,... The interfacial debonding between the active layer and the current collector has been recognized as a critical mechanism for battery fading,and thus has attracted great efforts focused on the related analyses.However,much still remains to be studied regarding practical methods for suppressing electrode debonding,especially from the perspective of mechanics.In this paper,a pre-strain strategy of current collectors to alleviate electrode debonding is proposed.An analytical model for a symmetric electrode with a deformable and limited-thickness current collector is developed to analyze the debonding behavior involving both a pre-strain of the current collector and an eigen-strain of the active layers.The results reveal that the well-designed pre-strain can significantly delay the debonding onset(by up to 100%)and considerably reduce the debonding size.The critical values of the pre-strain are identified,and the pre-strain design principles are also provided.Based on these findings,this work sheds light on the mechanical design to suppress electrode degradation. 展开更多
关键词 PRE-STRAIN current collector electrode debonding lithium-ion battery(LIB) mechanically-based design
下载PDF
Stress Path Analysis of Deep-Sea Sediments Under the Compression-Shear Coupling Load of Crawler Collectors
18
作者 ZHANG Ning MA Ning +2 位作者 YIN Shiyang CHEN Xuguang SONG Yuheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期65-74,共10页
The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression ... The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression load and a horizontal shear load.Then,the internal stress state of sedimentary soil is examined through a theoretical calculation and finite element numerical simulation.Finally,the driving of crawlers is simulated by changing the relative spatial position between the load and stress unit,obtaining the stress path of the soil unit.Based on the calculation results,the effect of the horizontal shear load on the soil stress response is analyzed at different depths,and the spatial variation law of the soil stress path is examined.The results demonstrate that the horizontal shear load has a significant effect on the rotation of the principal stress,and the reverse rotation of the principal stress axis becomes obvious with the increase in the burial depth.The stress path curve of the soil is different at various depths.The spatial variation rule of the stress path of the shallow soil is complex,whereas the stress path curve of the deep soil tends to shrink as the depth increases.The stress path of the corresponding depth should be selected according to the actual research purpose and applied to the laboratory test. 展开更多
关键词 deep-sea sediment crawler collector compression-shear coupling load stress path principal stress axis direction
下载PDF
Investigation and simulation of parabolic trough collector with the presence of hybrid nanofluid in the finned receiver tube
19
作者 M.Javidan M.Gorji-Bandpy A.Al-Araji 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期484-493,共10页
The present study discusses the thermal performance of the receiver tube,which contains a wall with various fin shapes in the parabolic trough collector.Inserted fins and bulge surfaces of the inner wall of the receiv... The present study discusses the thermal performance of the receiver tube,which contains a wall with various fin shapes in the parabolic trough collector.Inserted fins and bulge surfaces of the inner wall of the receiver tube increase the turbulent fluid flow.In pursuance of uniform distribution of heat transfer,various fin shapes such as square-shape,circle-shape,triangle-shape,and combined square-circle shapes were inserted,examined,and compared.A study of the temperature differences and fluid flow is meaningful for this project therefore finite volume method was used to investigate heat transfer.Also,hybrid Nano-Fluid AL_(2)O_(3-)CuO,TiO_(2-)Cu,and AgMgO were applied to increase thermal diffusivity.When the combined square-circle-shaped fin was inserted,the thermal peak of fluid flow in the receiver tube was lower than the other studied fin shapes by almost 1%.Besides,the hybrid nano-fluid Ag-MgO Syltherm-oil-800 has lower thermal waste in comparison to others by more than 3%. 展开更多
关键词 Parabolic trough collectors Hybrid nano-fluid Syltherm oil-800 Ag-MgO Thermal performance
下载PDF
Spontaneous local redox reaction to passivate CNTs as lightweight current collector for high energy density lithium ion batteries
20
作者 Chao Lv Zhen Tong +4 位作者 Shi-Yuan Zhou Si-Yu Pan Hong-Gang Liao Yao Zhou Jun-Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期553-561,I0013,共10页
Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulo... Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulombic efficiency(ICE),large interfacial resistance,and severe embrittlement,as the large specific surface area often results in severe interfacial decomposition of the electrolyte and the formation of thick and fluffy solid electrolyte interphase(SEI)during cycling of LIBs.Herein,we demonstrate that when the CNT-based current collector and Na foil(which are being stacked intimately upon each other)are being placed in Na+-based organic electrolyte,local redox reaction between the Na foil and the electrolyte would occur spontaneously,generating a thin and homogeneous NaF-based passivating layer on the CNTs.More importantly,we found that owing to the weak solvation behaviors of Na+in the organic electrolyte,the resulting passivation layer,which is rich in NaF,is thin and dense;when used as the anode current collector in LIBs,the pre-existing passivating layer can function effectively in isolating the anode from the solvated Li+,thus suppressing the formation of bulky SEI and the destructive intercalation of solvated Li+.The relevant half-cell(graphite as anode)exhibits a high ICE of 92.1%;the relevant pouch cell with thus passivated CNT film as current collectors for both electrodes(LiCoO_(2)as cathode,graphite as anode)displays a high energy density of 255 Wh kg^(-1),spelling an increase of 50%compared with that using the conventional metal current collectors. 展开更多
关键词 Lightweight current collector Passivating layer Initial coulombic efficiency High energy density storage
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部