A monolithically active-passive integrated colliding pulse mode-locked semiconductor laser is demonstrated in the InGaAsP//InP material system. The device is mode locked at the second harmonic passive mode-locking reg...A monolithically active-passive integrated colliding pulse mode-locked semiconductor laser is demonstrated in the InGaAsP//InP material system. The device is mode locked at the second harmonic passive mode-locking regime with a wide mode-locking range. Pulse trains with the repetition rate of 40 GHz, 3-dB rf line width of 25 kHz, the pulse width of 2.5 ps, and a nearly transform-limited time-bandwidth product of 0.53 are obtained.展开更多
An electron injector concept for a laser-plasma accelerator has been developed which relies on the use of counter propagating ultrashort laser pulses. In this paper, we use OOPIC the fully self-consistent, twodimensio...An electron injector concept for a laser-plasma accelerator has been developed which relies on the use of counter propagating ultrashort laser pulses. In this paper, we use OOPIC the fully self-consistent, twodimensional, particle-in-cell code to make a parameter study to determine the bunches that can be obtained through collisions of two collinear laser pulses in uniform plasma. A series of simulations show that one can obtain a short (<10fs) bunch with its charge of about 15pC, and energy spread of about 15%. We also discussed the variation of the transverse spot size of the electron bunch and found the bunch would undergo the betatron oscillations.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61335009,61274046 and 61474111
文摘A monolithically active-passive integrated colliding pulse mode-locked semiconductor laser is demonstrated in the InGaAsP//InP material system. The device is mode locked at the second harmonic passive mode-locking regime with a wide mode-locking range. Pulse trains with the repetition rate of 40 GHz, 3-dB rf line width of 25 kHz, the pulse width of 2.5 ps, and a nearly transform-limited time-bandwidth product of 0.53 are obtained.
基金Supported by NSFC (10525525, 10775154, 10575114)Knowledge Innovation Funds of IHEP, CAS (H75452A0U2)
文摘An electron injector concept for a laser-plasma accelerator has been developed which relies on the use of counter propagating ultrashort laser pulses. In this paper, we use OOPIC the fully self-consistent, twodimensional, particle-in-cell code to make a parameter study to determine the bunches that can be obtained through collisions of two collinear laser pulses in uniform plasma. A series of simulations show that one can obtain a short (<10fs) bunch with its charge of about 15pC, and energy spread of about 15%. We also discussed the variation of the transverse spot size of the electron bunch and found the bunch would undergo the betatron oscillations.