A control and data acquisition system was implemented for the recently developed collinear laser spectroscopy setup.This system is dedicated to data recording,storage,processing,monitoring of the beam intensity and en...A control and data acquisition system was implemented for the recently developed collinear laser spectroscopy setup.This system is dedicated to data recording,storage,processing,monitoring of the beam intensity and energy,and visualization of various spectra.In comparison to the conventional resonance nuclear reaction system,the key technique is the precise synchronization of the detected counts with the actual scanning voltage(or probing laser frequency).The functions of the system were tested by measuring the hyperfine structure spectra of stable calcium(e.g.,^(40)Ca^(+))and radioactive potassium(e.g.,^(38)K)in the bunched and continuous modes,respectively.This system will be routinely applied and further improved in subsequent laser spectroscopy experiments on unstable isotopes at the Beijing Radioactive Ion-beam Facility(BRIF).展开更多
Collinear laser spectroscopy is a powerful tool for studying the nuclear spins,electromagnetic moments,and charge radii of exotic nuclei.To study the nuclear properties of unstable nuclei at the Beijing Radioactive Io...Collinear laser spectroscopy is a powerful tool for studying the nuclear spins,electromagnetic moments,and charge radii of exotic nuclei.To study the nuclear properties of unstable nuclei at the Beijing Radioactive Ion-beam Facility(BRIF)and the future High Intensity Heavy-ion Accelerator Facility(HIAF),we developed a collinear laser spectroscopy apparatus integrated with an offline laser ablation ion source and a laser system.The overall performance of this state-of-the-art technique was evaluated,and the system was commissioned using a bunched stable ion beam.The high-resolution optical spectra for the 4s ^(2)S_(1/2)→4p^(2)P_(3/2)(D2)ionic transition of ^(40;42;44;48)Ca isotopes were successfully measured.The extracted isotope shifts relative to ^(40)Ca showed excellent agreement with the literature values.This system is now ready for use at radioactive ion beam facilities such as the BRIF and paves the way for the further development of higher-sensitivity collinear resonance ionization spectroscopy techniques.展开更多
Collinear dual-pulse laser-induced breakdown spectroscopy was carried out on Si crystal by using a pair of nanosecond Nd:YAG laser sources emitting at 1064 nm. The spectral intensities and signal- to-noise ratios of ...Collinear dual-pulse laser-induced breakdown spectroscopy was carried out on Si crystal by using a pair of nanosecond Nd:YAG laser sources emitting at 1064 nm. The spectral intensities and signal- to-noise ratios of selected Si atomic and ionic lines were used to evaluate the optical emission. The optical emission intensity was recorded while varying the interpulse delay time and energy ratio of the two pulsed lasers. The effects of the data acquisition delay time on the line intensity and signal-to-noise ratio have been investigated as well. Based on the results, the optimal interpulse delay time, energy ratio of the two pulsed lasers, and data acquisition delay time for achieving the maximum atomic and ionic line intensities were found for generation of Si plasma with the collinear dual-pulse laser approach. The dominant mechanism for the observed line intensity variation was also discussed. In addition, the plasma temperature and electron number density at different gate delay times and different interpulse delay times were derived. A significant influence of plasma shielding on the electron temperature and electron number density at shorter interpulse delay times was observed.展开更多
为获得共线双脉冲激发方式对土壤中Pb和Ba元素的谱线增强效果,研究了1064nm单脉冲和(355nm+1064nm),(1064nm+355nm)共线双脉冲三种激发方式下,谱线强度随采集延迟时间的变化规律和谱线增强倍数随双脉冲时间间隔的变化规律。研究发现,与...为获得共线双脉冲激发方式对土壤中Pb和Ba元素的谱线增强效果,研究了1064nm单脉冲和(355nm+1064nm),(1064nm+355nm)共线双脉冲三种激发方式下,谱线强度随采集延迟时间的变化规律和谱线增强倍数随双脉冲时间间隔的变化规律。研究发现,与单脉冲激发方式相比,在双脉冲激发方式下,谱线Pb I 405.78nm和Ba I 553.55nm强度的最大增强倍数分别为5和8。该研究结果为检测土壤中重金属元素提供了参考。展开更多
基金supported by the National Natural Science Foundation of China (Nos.12027809,U1967201,11875073,11875074 and 11961141003)National Key R&D Program of China (No.2018YFA0404403)the State Key Laboratory of Nuclear Physics and Technology,Peking University (Nos.NPT2019ZZ02,NPT2020KFY17).
文摘A control and data acquisition system was implemented for the recently developed collinear laser spectroscopy setup.This system is dedicated to data recording,storage,processing,monitoring of the beam intensity and energy,and visualization of various spectra.In comparison to the conventional resonance nuclear reaction system,the key technique is the precise synchronization of the detected counts with the actual scanning voltage(or probing laser frequency).The functions of the system were tested by measuring the hyperfine structure spectra of stable calcium(e.g.,^(40)Ca^(+))and radioactive potassium(e.g.,^(38)K)in the bunched and continuous modes,respectively.This system will be routinely applied and further improved in subsequent laser spectroscopy experiments on unstable isotopes at the Beijing Radioactive Ion-beam Facility(BRIF).
基金supported by the National Natural Science Foundation of China(Nos.12027809,U1967201,11875073,11875074 and 11961141003)National Key R&D Program of China(No.2018YFA0404403)+1 种基金China National Nuclear Corporation(No.FA18000201)the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2019ZZ02).
文摘Collinear laser spectroscopy is a powerful tool for studying the nuclear spins,electromagnetic moments,and charge radii of exotic nuclei.To study the nuclear properties of unstable nuclei at the Beijing Radioactive Ion-beam Facility(BRIF)and the future High Intensity Heavy-ion Accelerator Facility(HIAF),we developed a collinear laser spectroscopy apparatus integrated with an offline laser ablation ion source and a laser system.The overall performance of this state-of-the-art technique was evaluated,and the system was commissioned using a bunched stable ion beam.The high-resolution optical spectra for the 4s ^(2)S_(1/2)→4p^(2)P_(3/2)(D2)ionic transition of ^(40;42;44;48)Ca isotopes were successfully measured.The extracted isotope shifts relative to ^(40)Ca showed excellent agreement with the literature values.This system is now ready for use at radioactive ion beam facilities such as the BRIF and paves the way for the further development of higher-sensitivity collinear resonance ionization spectroscopy techniques.
基金This study was supported by the Na- tional Natural Science Foundation of China (Grant No. 61178034), the Natural Science Foundation of Zhejiang Province (Grant No. LY14F050003), and was partially supported by the Program for Innovative Research Team, Zhejiang Normal University, China.
文摘Collinear dual-pulse laser-induced breakdown spectroscopy was carried out on Si crystal by using a pair of nanosecond Nd:YAG laser sources emitting at 1064 nm. The spectral intensities and signal- to-noise ratios of selected Si atomic and ionic lines were used to evaluate the optical emission. The optical emission intensity was recorded while varying the interpulse delay time and energy ratio of the two pulsed lasers. The effects of the data acquisition delay time on the line intensity and signal-to-noise ratio have been investigated as well. Based on the results, the optimal interpulse delay time, energy ratio of the two pulsed lasers, and data acquisition delay time for achieving the maximum atomic and ionic line intensities were found for generation of Si plasma with the collinear dual-pulse laser approach. The dominant mechanism for the observed line intensity variation was also discussed. In addition, the plasma temperature and electron number density at different gate delay times and different interpulse delay times were derived. A significant influence of plasma shielding on the electron temperature and electron number density at shorter interpulse delay times was observed.
文摘为获得共线双脉冲激发方式对土壤中Pb和Ba元素的谱线增强效果,研究了1064nm单脉冲和(355nm+1064nm),(1064nm+355nm)共线双脉冲三种激发方式下,谱线强度随采集延迟时间的变化规律和谱线增强倍数随双脉冲时间间隔的变化规律。研究发现,与单脉冲激发方式相比,在双脉冲激发方式下,谱线Pb I 405.78nm和Ba I 553.55nm强度的最大增强倍数分别为5和8。该研究结果为检测土壤中重金属元素提供了参考。