Nonlinear structures of lower hybrid wave in collision plasmas are studied using the two-fluid theory.The oscillatory shock wave is observed due to the effects of the electron-neutral collision and the density inhomog...Nonlinear structures of lower hybrid wave in collision plasmas are studied using the two-fluid theory.The oscillatory shock wave is observed due to the effects of the electron-neutral collision and the density inhomogeneity.In the cold electron limit,the oscillatory shock wave becomes the ordinary shock wave.In the collisionless limit,the dominated equation becomes Kd V equation and the lower hybrid solitons arise.The amplitude of the nonlinear structure is depressed by the plasma inhomogeneity,but is hardly affected by the electron-neutral collision.展开更多
In magnetized collisional plasmas, owing to the differences between attenuations of left- and right-handed polarized waves, the Faraday rotation angle differs from that in collision- aless plasmas. In this paper, the ...In magnetized collisional plasmas, owing to the differences between attenuations of left- and right-handed polarized waves, the Faraday rotation angle differs from that in collision- aless plasmas. In this paper, the attenuation rates of left- and right-handed polarized waves are analyzed, and the Faraday angle is expressed by the real and imaginary parts of refractive index of the magnetized plasma, with clear physics meaning. Furthermore, the dependence of Faraday angle on collision frequency is calculated and discussed.展开更多
Effects of electron temperature on dielectric function and localization of laser beams in underdense collisional plasmas are investigated. Simulation results show that the electron temperature has a strong effect on t...Effects of electron temperature on dielectric function and localization of laser beams in underdense collisional plasmas are investigated. Simulation results show that the electron temperature has a strong effect on the dielectric constant and the laser beam localization. It is observed that due to the influence of the electron temperature, the dielectric function presents some interesting and complicated nonlinear variations, and gives rise to the laser beam lo- calization. Moreover, the amplitudes of the beam width and the beam intensity are subjected to continuously oscillatory variation in the region of localization. In addition, the effects of several parameters on the dielectric function and the beam localization are discussed.展开更多
A numerical two-fluid simulation of the non-ionized radio frequency (rf) sheath model, has been carried out. This model is "global" and thus applicable to the sheath, pre-sheath and plasma regions, In the model al...A numerical two-fluid simulation of the non-ionized radio frequency (rf) sheath model, has been carried out. This model is "global" and thus applicable to the sheath, pre-sheath and plasma regions, In the model all variables in the ion force balance equation, including the electrical force, ion pressure and neutral particle friction, are considered. The model is solved through a finite difference scheme and sheath characteristics are obtained. The effects of the ion temperature on both the collisionless and collisional sheath characteristics are discussed. Then it is concluded that 1) the model is in a good agreement with Bohm Theorem; 2) the ion temperature has significant effects on the rf sheath characteristics. The effects are far more significant on a collisional rf sheath than on a collisionless sheath.展开更多
Microwave frequency downshift in the time-varying collision plasma has been demonstrated by particle-in-cell simulations.The simulation results are consistent with the theoretical analysis,and the preconditions for mi...Microwave frequency downshift in the time-varying collision plasma has been demonstrated by particle-in-cell simulations.The simulation results are consistent with the theoretical analysis,and the preconditions for microwave frequency downshift are that the collision frequency needs to be greater than the incident wave frequency,and the plasma frequency is two times greater than the incident wave frequency.Finally,the simulation results are compared with the reported experimental results indicating good agreement.展开更多
Using the reductive perturbation method, we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma. The result shows that the small amplitude dust acoustic wave can be e...Using the reductive perturbation method, we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma. The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation, and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.展开更多
We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the elect...We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency pe, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.展开更多
Under Lagrange coordinates, the relativistic spherical plasma wave in a collisional and warm plasma is discussed theoretically. Within the Lagrange coordinates and using the Maxwell and hydrodynamics equations, a wave...Under Lagrange coordinates, the relativistic spherical plasma wave in a collisional and warm plasma is discussed theoretically. Within the Lagrange coordinates and using the Maxwell and hydrodynamics equations, a wave equation describing the relativistic spherical wave is derived. The damped oscillating spherical wave solution is obtained analytically using the perturbation theory. Because of the coupled effects of spherical geometry,thermal pressure, and collision effect, the electron damps the periodic oscillation. The oscillation frequency and the damping rate of the wave are related to not only the collision and thermal pressure effect but also the space coordinate. Near the center of the sphere, the thermal pressure significantly reduces the oscillation period and the damping rate of the wave, while the collision effect can strongly influence the damping rate. Far away from the spherical center, only the collision effect can reduce the oscillation period of the wave, while the collision effect and thermal pressure have weak influence on the damping rate.展开更多
The properties of a helium atmospheric-pressure plasma jet(APPJ)are diagnosed with a dual assisted grounded electrode dielectric barrier discharge device.In the glow discharge,we captured the current waveforms at th...The properties of a helium atmospheric-pressure plasma jet(APPJ)are diagnosed with a dual assisted grounded electrode dielectric barrier discharge device.In the glow discharge,we captured the current waveforms at the positions of the three grounded rings.From the current waveforms,the time delay between the adjacent positions of the rings is employed to calculate the plasma bullet velocity of the helium APPJ.Moreover,the electron density is deduced from a model combining with the time delay and current intensity,which is about 10^(11)cm^(-3).In addition,The ion-neutral particles collision frequency in the radial direction is calculated from the current phase difference between two rings,which is on the order of 10~7 Hz.The results are helpful for understanding the basic properties of APPJs.展开更多
We conduct a frequency spectrum experiment to investigate terahertz(THz) emissions from laser-induced air plasma under different laser incident powers. The frequency spectra are measured using both air-biased-cohere...We conduct a frequency spectrum experiment to investigate terahertz(THz) emissions from laser-induced air plasma under different laser incident powers. The frequency spectra are measured using both air-biased-coherent detection and a Michelson interferometer. The red-shift of the THz pulse carrier frequency is observed as a response to increased pump power. These phenomena are related to plasma collisions and can be explained by the plasma collision model. Based on these findings, it is apparent that the tuning of the THz carrier frequency can be achieved through regulation of the pump beam.展开更多
A metal-assisted method is proposed for the evaluation of gases’molecular abundance ratio in fiber-optic laser-induced breakdown spectroscopy(FO-LIBS).This method can reduce the laser ablation energy and make gas com...A metal-assisted method is proposed for the evaluation of gases’molecular abundance ratio in fiber-optic laser-induced breakdown spectroscopy(FO-LIBS).This method can reduce the laser ablation energy and make gas composition identification possible.The principle comes from the collision between the detected gases and the plasma produced by the laser ablation of the metal substrate.The interparticle collision in the plasma plume leads to gas molecules dissociating and sparking,which can be used to determine the gas composition.The quantitative relationship between spectral line intensity and molecular abundance ratio was developed over a large molecular abundance ratio range.The influence of laser ablation energy and substrate material on gas quantitative calibration measurement is also analyzed.The proposed metal-assisted method makes the measurement of gases’molecular abundance ratios possible with an FO-LIBS system.展开更多
Here a new scheme for mode filtering is proposed. Based on the ponderomotive force effect,propagation of the microwave dual-mode through a plasma-filled metallic rectangular waveguide is investigated. To excite the TE...Here a new scheme for mode filtering is proposed. Based on the ponderomotive force effect,propagation of the microwave dual-mode through a plasma-filled metallic rectangular waveguide is investigated. To excite the TE_(20) mode in a rectangular waveguide, the existence of fundamental modes is unavoidable. To filter the destructive mode(TE_(10)), the waveguide is filled with a collisional plasma. Based on the coupling effect, the energy of this destructive TE_(10) mode is transferred to the TE_(20) mode. The proposed structure acts like a mode convertor. The TE_(10) mode become more attenuated and instead the TE_(20) mode is amplified. The plasma filled rectangular waveguide acts as a mode filtering tool.展开更多
In this work, we study damped ion acoustic solitary wave structures in magnetized dense plasmas. The collisional effects of ions with electrons and neutrals are considered. The trapping effects of electrons and Landau...In this work, we study damped ion acoustic solitary wave structures in magnetized dense plasmas. The collisional effects of ions with electrons and neutrals are considered. The trapping effects of electrons and Landau quantization are included in the plasma model under consideration. We assume that magnetic field is quantized such that the condition■ is satisfied. We have derived the damped Korteweg–de Vries(dKdV) equation by using small amplitude reductive perturbation technique. The time-dependent analytical and numerical solutions of the dKdV equation are presented. For numerical solutions we apply a two level finite difference scheme with the help of the Runge Kutta method. The effects of variations of different plasma parameters on the propagation characteristics of damped solitary structures in the presence of collisions are discussed.展开更多
When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision...When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision frequency between electrons and neutrals. This paper proposes that a combined parameter -the product of the line average electron density n and width d of the APP layer (i.e., the total number of electrons in a unit volume along the wave propagation path) can play a more explicit and decisive role in the wave attenuation than any of the above individual parameters does. The attenuation of the EM wave via the product of n and d with various collision frequencies between electrons and neutrals is presented.展开更多
Plasma photonic crystals composed of periodic plasma and dielectric materials have attracted considerable attention because of their tunable photonic band gaps,but only their band structures or negative refractive ind...Plasma photonic crystals composed of periodic plasma and dielectric materials have attracted considerable attention because of their tunable photonic band gaps,but only their band structures or negative refractive index properties have been addressed in previous works.In this paper,through studying the transmission and reflection characteristics of two types of twodimensional plasma photonic crystals,it is found that plasma photonic crystals play an important role in absorbing waves,and they show broader band and higher amplitude absorption characteristics than bulk plasmas.Also,the absorption of plasma photonic crystals can be tuned via plasma parameters;varying the collision frequency can make the bandwidth and amplitude tunable,but cannot change the central frequency,whereas varying the plasma frequency would control both the location and the amplitude of the absorbers.These features of plasma photonic crystals have potential for terahertz tunable absorber applications.展开更多
The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is model...The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is modeled to optimize the low-energy ion implantation parameters for industrial applications.In this paper,a magnetized plasma diffusion fluid model has been established to describe the plasma nonuniformity caused by plasma diffusion under an axial magnetic field during the pulse-off time of low pulsed negative bias.Using this plasma density distribution as the initial condition,a sheath collisional fluid model is built up to describe the sheath evolution and ion implantation during the pulse-on time.The plasma nonuniformity at the end of the pulse-off time is more apparent along the radial direction compared with that in the axial direction due to the geometry of the linear plasma source in the center and the difference between perpendicular and parallel plasma diffusion coefficients with respect to the magnetic field.The normalized nitrogen plasma densities on the inner and outer surfaces of the tube are observed to be about 0.39 and 0.24,respectively,of which the value is 1 at the central plasma source.After a 5μs pulse-on time,in the area less than 2 cm from the end of the tube,the nitrogen ion implantation energy decreases from 1.5 keV to 1.3 keV and the ion implantation angle increases from several degrees to more than 40°;both variations reduce the nitrogen ion implantation depth.However,the nitrogen ion implantation dose peaks of about 2×10^(10)-7×10^(10)ions/cm^2 in this area are 2-4 times higher than that of 1.18×10^(10)ions/cm^2 and 1.63×10^(10)ions/cm^2 on the inner and outer surfaces of the tube.The sufficient ion implantation dose ensures an acceptable modification effect near the end of the tube under the low energy and large angle conditions for nitrogen ion implantation,because the modification effect is mainly determined by the ion implantation dose,just as the mass transfer process in PBLEII is dominated by low-energy ion implantation and thermal diffusion.Therefore,a comparatively uniform surface modification by the low-energy nitrogen ion implantation is achieved along the cylindrical tube on both the inner and outer surfaces.展开更多
This paper presents an investigation on the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with linear absorption. We have derived the differential equation for the beam width parameter ...This paper presents an investigation on the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with linear absorption. We have derived the differential equation for the beam width parameter by using WKB and paraxial approximations and solved it numerically. The effect of chirp and other laser plasma parameters is seen on the behavior of beam width parameter with dimensionless distance of propagation. The results are discussed and presented graphically. Our simulation results show that the amplitude of oscillations decreases with the distance of propagation. Due to collisional frequency, the laser beam shows fast divergence which can be minimized by the introduction of chirp parameter. The chirp decreases the effect of defocusing and increases the ability of self-focusing of laser beam in collisional plasma.展开更多
In this paper we present the modelling of elastic intra-species electron-electron and inter-species electron-ion scattering in a plasma on the basis of the FokkerPlanck collision operator.Taking into account the equiv...In this paper we present the modelling of elastic intra-species electron-electron and inter-species electron-ion scattering in a plasma on the basis of the FokkerPlanck collision operator.Taking into account the equivalence of this operator with a stochastic differential equation,we propose a Particle-in-Cell based approach for the numerical solution of the Fokker-Planck collision term.As we will see,the introduced numerical concept allows the simulation of the collisional relaxation process in a fully self-consistent fashion.展开更多
The propagation and interaction between ion acoustic multi-solitons in an unmagnetized multicomponent plasma consisting of fluid hot ions, positrons and both hot and cold electrons, are investigated by employing the e...The propagation and interaction between ion acoustic multi-solitons in an unmagnetized multicomponent plasma consisting of fluid hot ions, positrons and both hot and cold electrons, are investigated by employing the extended Poincare–Lighthill–Kuo(PLK) method. Two different Kortewege-de Vries(K-dV) equations are derived. The Hirota's method is applied to get the K-dV multi-solitons solution. The phase shift due to the overtaking and head- on collision of the multi-solitons is obtained.展开更多
A novel approximate analytical solution to the linear damped Kawahara equation using a suitable hypothesis is reported for the first time.Based on the exact solutions(such as solitary waves,cnoidal waves,etc.)of the u...A novel approximate analytical solution to the linear damped Kawahara equation using a suitable hypothesis is reported for the first time.Based on the exact solutions(such as solitary waves,cnoidal waves,etc.)of the undamped Kawahara equation,the dissipative nonlinear structures like dissipative solitons and cnoidal waves are investigated.The obtained solution is considered a general solution,i.e.,it can be applied for studying the properties of all dissipative traveling waves described by the linear damped Kawahara equation.Our technique is not limited to solve the linear damped Kawahara equation only,but it can be used for solving a large number of non-integrable evolution equations related to the realistic natural phenomena.Moreover,the maximum global residual error in the whole space-time domain is estimated for checking the accuracy of the obtained solutions.The obtained solutions can help many researchers in explaining the ambiguities about the mechanisms of propagation of nonlinear waves in complex systems such as seas,oceans,plasma physics,and much more.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos.11405001,11147163Key Project of Outstanding Young Talents of Anhui Province under Grant No.gxyq ZD2016146the Foundation of Anhui Educational Commission of China under Grant Nos.KJ2014A046,KJ2013B059
文摘Nonlinear structures of lower hybrid wave in collision plasmas are studied using the two-fluid theory.The oscillatory shock wave is observed due to the effects of the electron-neutral collision and the density inhomogeneity.In the cold electron limit,the oscillatory shock wave becomes the ordinary shock wave.In the collisionless limit,the dominated equation becomes Kd V equation and the lower hybrid solitons arise.The amplitude of the nonlinear structure is depressed by the plasma inhomogeneity,but is hardly affected by the electron-neutral collision.
基金supported by Program for New Century Excellent Talents (NCET) of China
文摘In magnetized collisional plasmas, owing to the differences between attenuations of left- and right-handed polarized waves, the Faraday rotation angle differs from that in collision- aless plasmas. In this paper, the attenuation rates of left- and right-handed polarized waves are analyzed, and the Faraday angle is expressed by the real and imaginary parts of refractive index of the magnetized plasma, with clear physics meaning. Furthermore, the dependence of Faraday angle on collision frequency is calculated and discussed.
基金Project supported by the Autonomous Innovation Fund,China (Grant Nos.0109012922 and 0109012926)the Youth Foundation of Department of Education of Hubei Province,China (Grant No.Q20101602)
文摘Effects of electron temperature on dielectric function and localization of laser beams in underdense collisional plasmas are investigated. Simulation results show that the electron temperature has a strong effect on the dielectric constant and the laser beam localization. It is observed that due to the influence of the electron temperature, the dielectric function presents some interesting and complicated nonlinear variations, and gives rise to the laser beam lo- calization. Moreover, the amplitudes of the beam width and the beam intensity are subjected to continuously oscillatory variation in the region of localization. In addition, the effects of several parameters on the dielectric function and the beam localization are discussed.
基金supported by the National Natural Science Foundation of China (Nos. 10175013, 10575018 40390155, 40228006)
文摘A numerical two-fluid simulation of the non-ionized radio frequency (rf) sheath model, has been carried out. This model is "global" and thus applicable to the sheath, pre-sheath and plasma regions, In the model all variables in the ion force balance equation, including the electrical force, ion pressure and neutral particle friction, are considered. The model is solved through a finite difference scheme and sheath characteristics are obtained. The effects of the ion temperature on both the collisionless and collisional sheath characteristics are discussed. Then it is concluded that 1) the model is in a good agreement with Bohm Theorem; 2) the ion temperature has significant effects on the rf sheath characteristics. The effects are far more significant on a collisional rf sheath than on a collisionless sheath.
文摘Microwave frequency downshift in the time-varying collision plasma has been demonstrated by particle-in-cell simulations.The simulation results are consistent with the theoretical analysis,and the preconditions for microwave frequency downshift are that the collision frequency needs to be greater than the incident wave frequency,and the plasma frequency is two times greater than the incident wave frequency.Finally,the simulation results are compared with the reported experimental results indicating good agreement.
基金Project supported by the Initial Research Fund of Shihezi University,China (Grant Nos. RCZX200742 and RCZX200743)
文摘Using the reductive perturbation method, we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma. The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation, and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.
基金Supported by the Yarmouk Universitythe KUSTAR–KAIST Institution Fund
文摘We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency pe, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11865014,11764039,11765017,11475027,11274255 and 11305132the Natural Science Foundation of Gansu Province under Grant No 17JR5RA076the Scientific Research Project of Gansu Higher Education under Grand No 2016A-005
文摘Under Lagrange coordinates, the relativistic spherical plasma wave in a collisional and warm plasma is discussed theoretically. Within the Lagrange coordinates and using the Maxwell and hydrodynamics equations, a wave equation describing the relativistic spherical wave is derived. The damped oscillating spherical wave solution is obtained analytically using the perturbation theory. Because of the coupled effects of spherical geometry,thermal pressure, and collision effect, the electron damps the periodic oscillation. The oscillation frequency and the damping rate of the wave are related to not only the collision and thermal pressure effect but also the space coordinate. Near the center of the sphere, the thermal pressure significantly reduces the oscillation period and the damping rate of the wave, while the collision effect can strongly influence the damping rate. Far away from the spherical center, only the collision effect can reduce the oscillation period of the wave, while the collision effect and thermal pressure have weak influence on the damping rate.
基金supported by National Natural Science Foundation of China(No.11105093)the Technological Project of Shenzhen,China(No.JC201005280485A)the Planned S&T Program of Shenzhen,China(No.JC201105170703A)
文摘The properties of a helium atmospheric-pressure plasma jet(APPJ)are diagnosed with a dual assisted grounded electrode dielectric barrier discharge device.In the glow discharge,we captured the current waveforms at the positions of the three grounded rings.From the current waveforms,the time delay between the adjacent positions of the rings is employed to calculate the plasma bullet velocity of the helium APPJ.Moreover,the electron density is deduced from a model combining with the time delay and current intensity,which is about 10^(11)cm^(-3).In addition,The ion-neutral particles collision frequency in the radial direction is calculated from the current phase difference between two rings,which is on the order of 10~7 Hz.The results are helpful for understanding the basic properties of APPJs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61377109 and 11374007)the Support Program for Outstanding Ph.D. Advisors,China(Grant No.YB20101000701)
文摘We conduct a frequency spectrum experiment to investigate terahertz(THz) emissions from laser-induced air plasma under different laser incident powers. The frequency spectra are measured using both air-biased-coherent detection and a Michelson interferometer. The red-shift of the THz pulse carrier frequency is observed as a response to increased pump power. These phenomena are related to plasma collisions and can be explained by the plasma collision model. Based on these findings, it is apparent that the tuning of the THz carrier frequency can be achieved through regulation of the pump beam.
基金supported by the National Key R&D Program of China(No.2017YFC1200400)the Development Fund of Institute of Fluid Physics,China Academy of Engineering Physics(No.SFZ20150302)。
文摘A metal-assisted method is proposed for the evaluation of gases’molecular abundance ratio in fiber-optic laser-induced breakdown spectroscopy(FO-LIBS).This method can reduce the laser ablation energy and make gas composition identification possible.The principle comes from the collision between the detected gases and the plasma produced by the laser ablation of the metal substrate.The interparticle collision in the plasma plume leads to gas molecules dissociating and sparking,which can be used to determine the gas composition.The quantitative relationship between spectral line intensity and molecular abundance ratio was developed over a large molecular abundance ratio range.The influence of laser ablation energy and substrate material on gas quantitative calibration measurement is also analyzed.The proposed metal-assisted method makes the measurement of gases’molecular abundance ratios possible with an FO-LIBS system.
基金supported by Hormoz branch, Islamic Azad University, Iran, Hormoze Island grant
文摘Here a new scheme for mode filtering is proposed. Based on the ponderomotive force effect,propagation of the microwave dual-mode through a plasma-filled metallic rectangular waveguide is investigated. To excite the TE_(20) mode in a rectangular waveguide, the existence of fundamental modes is unavoidable. To filter the destructive mode(TE_(10)), the waveguide is filled with a collisional plasma. Based on the coupling effect, the energy of this destructive TE_(10) mode is transferred to the TE_(20) mode. The proposed structure acts like a mode convertor. The TE_(10) mode become more attenuated and instead the TE_(20) mode is amplified. The plasma filled rectangular waveguide acts as a mode filtering tool.
文摘In this work, we study damped ion acoustic solitary wave structures in magnetized dense plasmas. The collisional effects of ions with electrons and neutrals are considered. The trapping effects of electrons and Landau quantization are included in the plasma model under consideration. We assume that magnetic field is quantized such that the condition■ is satisfied. We have derived the damped Korteweg–de Vries(dKdV) equation by using small amplitude reductive perturbation technique. The time-dependent analytical and numerical solutions of the dKdV equation are presented. For numerical solutions we apply a two level finite difference scheme with the help of the Runge Kutta method. The effects of variations of different plasma parameters on the propagation characteristics of damped solitary structures in the presence of collisions are discussed.
基金the National Natural Science Foundation of China(No.90405004)the Graduate Student Technology Innovation Foundation of Huazhong University of Science and Technology
文摘When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision frequency between electrons and neutrals. This paper proposes that a combined parameter -the product of the line average electron density n and width d of the APP layer (i.e., the total number of electrons in a unit volume along the wave propagation path) can play a more explicit and decisive role in the wave attenuation than any of the above individual parameters does. The attenuation of the EM wave via the product of n and d with various collision frequencies between electrons and neutrals is presented.
基金supported by National Natural Science Foundation of China(Nos.61107030,11174280,60990323 and 60990320)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(No.BS2010CL025)the China Postdoctoral Science Foundation
文摘Plasma photonic crystals composed of periodic plasma and dielectric materials have attracted considerable attention because of their tunable photonic band gaps,but only their band structures or negative refractive index properties have been addressed in previous works.In this paper,through studying the transmission and reflection characteristics of two types of twodimensional plasma photonic crystals,it is found that plasma photonic crystals play an important role in absorbing waves,and they show broader band and higher amplitude absorption characteristics than bulk plasmas.Also,the absorption of plasma photonic crystals can be tuned via plasma parameters;varying the collision frequency can make the bandwidth and amplitude tunable,but cannot change the central frequency,whereas varying the plasma frequency would control both the location and the amplitude of the absorbers.These features of plasma photonic crystals have potential for terahertz tunable absorber applications.
基金supported by National Natural Science Foundation of China(Nos.50725519,51271048,51321004)
文摘The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is modeled to optimize the low-energy ion implantation parameters for industrial applications.In this paper,a magnetized plasma diffusion fluid model has been established to describe the plasma nonuniformity caused by plasma diffusion under an axial magnetic field during the pulse-off time of low pulsed negative bias.Using this plasma density distribution as the initial condition,a sheath collisional fluid model is built up to describe the sheath evolution and ion implantation during the pulse-on time.The plasma nonuniformity at the end of the pulse-off time is more apparent along the radial direction compared with that in the axial direction due to the geometry of the linear plasma source in the center and the difference between perpendicular and parallel plasma diffusion coefficients with respect to the magnetic field.The normalized nitrogen plasma densities on the inner and outer surfaces of the tube are observed to be about 0.39 and 0.24,respectively,of which the value is 1 at the central plasma source.After a 5μs pulse-on time,in the area less than 2 cm from the end of the tube,the nitrogen ion implantation energy decreases from 1.5 keV to 1.3 keV and the ion implantation angle increases from several degrees to more than 40°;both variations reduce the nitrogen ion implantation depth.However,the nitrogen ion implantation dose peaks of about 2×10^(10)-7×10^(10)ions/cm^2 in this area are 2-4 times higher than that of 1.18×10^(10)ions/cm^2 and 1.63×10^(10)ions/cm^2 on the inner and outer surfaces of the tube.The sufficient ion implantation dose ensures an acceptable modification effect near the end of the tube under the low energy and large angle conditions for nitrogen ion implantation,because the modification effect is mainly determined by the ion implantation dose,just as the mass transfer process in PBLEII is dominated by low-energy ion implantation and thermal diffusion.Therefore,a comparatively uniform surface modification by the low-energy nitrogen ion implantation is achieved along the cylindrical tube on both the inner and outer surfaces.
基金Supported by a financial grant from CSIR,New Delhi,India,under Project No.03(1277)/13/EMR-Ⅱ
文摘This paper presents an investigation on the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with linear absorption. We have derived the differential equation for the beam width parameter by using WKB and paraxial approximations and solved it numerically. The effect of chirp and other laser plasma parameters is seen on the behavior of beam width parameter with dimensionless distance of propagation. The results are discussed and presented graphically. Our simulation results show that the amplitude of oscillations decreases with the distance of propagation. Due to collisional frequency, the laser beam shows fast divergence which can be minimized by the introduction of chirp parameter. The chirp decreases the effect of defocusing and increases the ability of self-focusing of laser beam in collisional plasma.
文摘In this paper we present the modelling of elastic intra-species electron-electron and inter-species electron-ion scattering in a plasma on the basis of the FokkerPlanck collision operator.Taking into account the equivalence of this operator with a stochastic differential equation,we propose a Particle-in-Cell based approach for the numerical solution of the Fokker-Planck collision term.As we will see,the introduced numerical concept allows the simulation of the collisional relaxation process in a fully self-consistent fashion.
文摘The propagation and interaction between ion acoustic multi-solitons in an unmagnetized multicomponent plasma consisting of fluid hot ions, positrons and both hot and cold electrons, are investigated by employing the extended Poincare–Lighthill–Kuo(PLK) method. Two different Kortewege-de Vries(K-dV) equations are derived. The Hirota's method is applied to get the K-dV multi-solitons solution. The phase shift due to the overtaking and head- on collision of the multi-solitons is obtained.
基金the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under grant No.(G:42-665-1442).
文摘A novel approximate analytical solution to the linear damped Kawahara equation using a suitable hypothesis is reported for the first time.Based on the exact solutions(such as solitary waves,cnoidal waves,etc.)of the undamped Kawahara equation,the dissipative nonlinear structures like dissipative solitons and cnoidal waves are investigated.The obtained solution is considered a general solution,i.e.,it can be applied for studying the properties of all dissipative traveling waves described by the linear damped Kawahara equation.Our technique is not limited to solve the linear damped Kawahara equation only,but it can be used for solving a large number of non-integrable evolution equations related to the realistic natural phenomena.Moreover,the maximum global residual error in the whole space-time domain is estimated for checking the accuracy of the obtained solutions.The obtained solutions can help many researchers in explaining the ambiguities about the mechanisms of propagation of nonlinear waves in complex systems such as seas,oceans,plasma physics,and much more.