期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Driver Intent Prediction and Collision Avoidance With Barrier Functions
1
作者 Yousaf Rahman Abhishek Sharma +2 位作者 Mrdjan Jankovic Mario Santillo Michael Hafner 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期365-375,共11页
For autonomous vehicles and driver assist systems,path planning and collision avoidance algorithms benefit from accurate predictions of future location of other vehicles and intent of their drivers.In the literature,t... For autonomous vehicles and driver assist systems,path planning and collision avoidance algorithms benefit from accurate predictions of future location of other vehicles and intent of their drivers.In the literature,the algorithms that provide driver intent belong to two categories:those that use physics based models with some type of filtering,and machine learning based approaches.In this paper we employ barrier functions(BF)to decide driver intent.BFs are typically used to prove safety by establishing forward invariance of an admissible set.Here,we decide if the“target”vehicle is violating one or more possibly fictitious(i.e.,non-physical)barrier constraints determined based on the context provided by the road geometry.The algorithm has a very small computational footprint and better false positive and negative rates than some of the alternatives.The predicted intent is then used by a control barrier function(CBF)based collision avoidance system to prevent unnecessary interventions,for either an autonomous or human-driven vehicle. 展开更多
关键词 Driver Intent prediction and collision Avoidance With Barrier Functions INTENT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部