期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
X-ray spectra of high temperature tungsten plasma calculated with collisional radiative model
1
作者 王君 张红 程新路 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期514-518,共5页
Tungsten is regarded as an important candidate of plasma facing material in international thermonuclear experimental reactor (ITER), so the determination and modeling of spectra of tungsten plasma, especially the sp... Tungsten is regarded as an important candidate of plasma facing material in international thermonuclear experimental reactor (ITER), so the determination and modeling of spectra of tungsten plasma, especially the spectra at high temperature were intensely focused on recently. In this work, using the atomic structure code of Cowan, a collisional radiative model (CRM) based on the spin-orbit-split-arrays is developed. Based on this model, the charge state distribution of tungsten ions is determined and the soft X-ray spectra from high charged ions of tungsten at different temperatures are calculated. The results show that both the average ionization charge and line positions are well agreed with others calculations and measurements with discrepancies of less than 0.63% and 1.26%, respectively. The spectra at higher temperatures are also reported and the relationship between ion abundance and temperature is predicted in this work. 展开更多
关键词 tungsten plasma high temperature X-ray spectra collisional radiative model
下载PDF
Non-invasive optical characterization and estimation of Zn porosity in gas tungsten arc welding of Fe–Al joints using CR model and OES measurements
2
作者 Sai SRIKAR Tinku KUMAR +1 位作者 Degala Venkata KIRAN Reetesh Kumar GANGWAR 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第11期133-141,共9页
In this study,we employed a non-invasive approach based on the collisional radiative(CR)model and optical emission spectroscopy(OES)measurements for the characterization of gas tungsten arc welding(GTAW)discharge and ... In this study,we employed a non-invasive approach based on the collisional radiative(CR)model and optical emission spectroscopy(OES)measurements for the characterization of gas tungsten arc welding(GTAW)discharge and quantification of Zn-induced porosity during the GTAW process of Fe–Al joints.The OES measurements were recorded as a function of weld current,welding speed,and input waveform.The OES measurements revealed significant line emissions from Zn-I in 460–640 nm and Ar-I in 680–800 nm wavelength ranges in all experimental settings.The OES coupled CR model approach for Zn-I line emission enabled the simultaneous determination of both essential discharge parameters i.e.electron temperature and electron density.Further,these predictions were used to estimate the Zn-induced porosity using OES-actinometry on Zn-I emission lines using Ar as actinometer gas.The OES-actinometry results were in good agreement with porosity data derived from an independent approach,i.e.x-ray radiography images.The current study shows that OES-based techniques can provide an efficient route for real-time monitoring of weld quality and estimate porosity during the GTAW process of dissimilar metal joints. 展开更多
关键词 optical emission spectroscopy collisional radiative model ACTINOMETRY GTAW Fe Al joints Zn vapor porosity radiographic imaging(Some figures may appear in colour only in the online journal)
下载PDF
Soft X-Ray Laser Gain from Neon like Gallium and Germanium
3
作者 Mohammad Z. Mansour Wessameldin S. Abdelaziz Tharwat M. El Sherbini 《Journal of Modern Physics》 2016年第9期928-935,共8页
Gain coefficients are calculated for neon-like gallium and germanium ions. Shorter wavelengths are calculated and predicted to be emitted. The gain coefficients are calculated among 457 energy levels of the neon-like ... Gain coefficients are calculated for neon-like gallium and germanium ions. Shorter wavelengths are calculated and predicted to be emitted. The gain coefficients are calculated among 457 energy levels of the neon-like ions. Collisional excitations were calculated through the distorted wave approximations through five electron temperatures T<sub>e</sub> = 300, 500, 700, 1000 and 1500 eV. 展开更多
关键词 Gain Coefficients X-Ray Lasers collisional radiative model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部