The equation of electromagnetic wave propagation through cold collisionless plasma can be reduced to the modified Kortweg-de Vries (mKdV) equation. Using a new technique, whose keys are the trial solution in terms o...The equation of electromagnetic wave propagation through cold collisionless plasma can be reduced to the modified Kortweg-de Vries (mKdV) equation. Using a new technique, whose keys are the trial solution in terms of the exponential function and the ideas of the like-terms' balance, some groups of accurate analytical solutions for this mKdV equation, such as solitary wave solutions, can be obtained. It is successfully shown that this method may be still valid for solving other nonlinear plasma equations.展开更多
The purpose of this study is to explore the second harmonic generation(SHG)of a high power Cosh-Gaussian beam in cold collisionless plasma.The ponderomotive force causes carrier redistribution from high field to low f...The purpose of this study is to explore the second harmonic generation(SHG)of a high power Cosh-Gaussian beam in cold collisionless plasma.The ponderomotive force causes carrier redistribution from high field to low field region in presence of a Cosh-Gaussian beam thereby producing density gradients in the transverse direction.The density gradients so produced the results in electron plasma wave(EPW)generation at the frequency of the input beam.The EPW interacts with the input beam resulting in the production of 2nd harmonics.WKB and paraxial approximations are employed for obtaining the 2nd order differential equation describing the behavior of the beam’s spot size against normalized distance.The impact of well-established laser-plasma parameters on the behavior of the beam’s spot size and SHG yield are also analyzed.The focusing behavior of the beam and SHG yield is enhanced with an increase in the density of plasma,the radius of the beam and the decentred parameter,and with a decrease in the intensity of the beam.The results of the current problem are really helpful for complete information of laser-plasma interaction physics.展开更多
This work reveals an exploration of self-focusing of Hermite-cosine-Gaussian laser beam in a collisionless plasma under relativistic nonlinearity. Self-focusing along with self-trapping of Hermite-cosine-Gaussian lase...This work reveals an exploration of self-focusing of Hermite-cosine-Gaussian laser beam in a collisionless plasma under relativistic nonlinearity. Self-focusing along with self-trapping of Hermite-cosine-Gaussian laser beam are analyzed for different values of laser intensity, plasma density, and decentered parameters. Mathematical analysis displays that these parameters play a major role in achieving the stronger and earlier self-focusing. Further, a comparative study between self-focusing of Hermite-cosine-Gaussian laser beam with and without exponential density ramp profile is introduced. Plasma density transition with exponential profile is found to be more effective in order to have stronger self-focusing. The present analysis may lead to very useful applications in the field of efficient harmonic generation, laser driven fusion etc.展开更多
A triple frequency capacitively coupled plasma (TF-CCP) has been considered to investigate the behavior of the sheath parameters. A self-consistent time-independent collisionless model has been developed. The sheath...A triple frequency capacitively coupled plasma (TF-CCP) has been considered to investigate the behavior of the sheath parameters. A self-consistent time-independent collisionless model has been developed. The sheath width and potential are calculated using the present model and compared with those calculated using a single-frequency (SF), a dual-frequency (DF) and a triple-frequency (TF) model for time independent collisionless cases. The sheath motion and sheath potential are found to be larger compared with those of SF and DF CCPs for an inhomogeneous sheath, and that of TF CCP for a homogeneous sheath. The effects of the source parameters, i.e., current magnitudes, frequencies and phase difference, on the sheath parameters are investigated. The sheath parameters show higher values at higher source currents whereas they decrease with the increase of excitation frequencies. It has also been found that, by the proper choice of source frequencies and phase differences, it is possible to adjust the energy of ions when they hit the electrode.展开更多
We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of ...We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈45° and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated, however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.展开更多
The enhanced growth rate of whistler mode waves has been evaluated during an injection event associated with an isolated terrestrial substorm that occurred at 23:00 UT, on January 21, 1991. The electron phase space d...The enhanced growth rate of whistler mode waves has been evaluated during an injection event associated with an isolated terrestrial substorm that occurred at 23:00 UT, on January 21, 1991. The electron phase space density observed by an LEPA instrument on the board of the CRRES spacecraft is modelled by using a bi-loss-cone distribution function (composed of a high anisotropic component and a quasi-isotropic component). During the injection event, the path integrated gain may increase by a factor of 5 over a frequency range near a few tenths of the electron gyrofrequency, which is consistent with the enhancement observed in the CRRES plasma wave experiment (PWE) emissions. Scattering of electrons by the enhanced whistler mode waves causes the pitch angle distribution of resonant electrons to a quasi isotropic (fiat-top) distribution during the terrestrial substorm injection event.展开更多
This paper presents propagation of two cross-focused intense hollow Gaussian laser beams(HGBs) in collisionless plasma and its effect on the generation of electron plasma wave(EPW) and electron acceleration process,wh...This paper presents propagation of two cross-focused intense hollow Gaussian laser beams(HGBs) in collisionless plasma and its effect on the generation of electron plasma wave(EPW) and electron acceleration process,when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams,which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams.展开更多
文摘The equation of electromagnetic wave propagation through cold collisionless plasma can be reduced to the modified Kortweg-de Vries (mKdV) equation. Using a new technique, whose keys are the trial solution in terms of the exponential function and the ideas of the like-terms' balance, some groups of accurate analytical solutions for this mKdV equation, such as solitary wave solutions, can be obtained. It is successfully shown that this method may be still valid for solving other nonlinear plasma equations.
文摘The purpose of this study is to explore the second harmonic generation(SHG)of a high power Cosh-Gaussian beam in cold collisionless plasma.The ponderomotive force causes carrier redistribution from high field to low field region in presence of a Cosh-Gaussian beam thereby producing density gradients in the transverse direction.The density gradients so produced the results in electron plasma wave(EPW)generation at the frequency of the input beam.The EPW interacts with the input beam resulting in the production of 2nd harmonics.WKB and paraxial approximations are employed for obtaining the 2nd order differential equation describing the behavior of the beam’s spot size against normalized distance.The impact of well-established laser-plasma parameters on the behavior of the beam’s spot size and SHG yield are also analyzed.The focusing behavior of the beam and SHG yield is enhanced with an increase in the density of plasma,the radius of the beam and the decentred parameter,and with a decrease in the intensity of the beam.The results of the current problem are really helpful for complete information of laser-plasma interaction physics.
文摘This work reveals an exploration of self-focusing of Hermite-cosine-Gaussian laser beam in a collisionless plasma under relativistic nonlinearity. Self-focusing along with self-trapping of Hermite-cosine-Gaussian laser beam are analyzed for different values of laser intensity, plasma density, and decentered parameters. Mathematical analysis displays that these parameters play a major role in achieving the stronger and earlier self-focusing. Further, a comparative study between self-focusing of Hermite-cosine-Gaussian laser beam with and without exponential density ramp profile is introduced. Plasma density transition with exponential profile is found to be more effective in order to have stronger self-focusing. The present analysis may lead to very useful applications in the field of efficient harmonic generation, laser driven fusion etc.
文摘A triple frequency capacitively coupled plasma (TF-CCP) has been considered to investigate the behavior of the sheath parameters. A self-consistent time-independent collisionless model has been developed. The sheath width and potential are calculated using the present model and compared with those calculated using a single-frequency (SF), a dual-frequency (DF) and a triple-frequency (TF) model for time independent collisionless cases. The sheath motion and sheath potential are found to be larger compared with those of SF and DF CCPs for an inhomogeneous sheath, and that of TF CCP for a homogeneous sheath. The effects of the source parameters, i.e., current magnitudes, frequencies and phase difference, on the sheath parameters are investigated. The sheath parameters show higher values at higher source currents whereas they decrease with the increase of excitation frequencies. It has also been found that, by the proper choice of source frequencies and phase differences, it is possible to adjust the energy of ions when they hit the electrode.
基金Supported by the National Natural Science Foundation of China under Grant Nos G200078405, 40336053 and 40274052, and the International Collaboration Research Team Program of the Chinese Academy of Sciences.
文摘We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈45° and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated, however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40474064 and 40404012, and the 0utstanding Youth Foundation of Education Bureau of Hunan Province under Grant No 04B003.
文摘The enhanced growth rate of whistler mode waves has been evaluated during an injection event associated with an isolated terrestrial substorm that occurred at 23:00 UT, on January 21, 1991. The electron phase space density observed by an LEPA instrument on the board of the CRRES spacecraft is modelled by using a bi-loss-cone distribution function (composed of a high anisotropic component and a quasi-isotropic component). During the injection event, the path integrated gain may increase by a factor of 5 over a frequency range near a few tenths of the electron gyrofrequency, which is consistent with the enhancement observed in the CRRES plasma wave experiment (PWE) emissions. Scattering of electrons by the enhanced whistler mode waves causes the pitch angle distribution of resonant electrons to a quasi isotropic (fiat-top) distribution during the terrestrial substorm injection event.
基金Supported by United Arab Emirates University for Financial under Grant No.UPAR(2014)-31S164
文摘This paper presents propagation of two cross-focused intense hollow Gaussian laser beams(HGBs) in collisionless plasma and its effect on the generation of electron plasma wave(EPW) and electron acceleration process,when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams,which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams.