The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their appl...The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields.展开更多
This paper applies the singular integral operators, singular quadrature operators and discretization matrices associated with singular integral equations with Cauchy kernels, which are established in [1], to give a un...This paper applies the singular integral operators, singular quadrature operators and discretization matrices associated with singular integral equations with Cauchy kernels, which are established in [1], to give a unified framework for various collocation methods of numerical solutions of singular integral equations with Cauchy kernels. Under the framework, the coincidence of the direct quadrature method and the indirect quadrature method is very simple and obvious.展开更多
The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gau...The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gauss-Lobatto collocation points. By means of the simplifed Jacobi operational matrix, we produce the diferentiation matrix and transfer the space-fractional Burgers' equation into a system of ordinary diferential equations that can be solved by the fourth-order Runge-Kutta method. The numerical simulations indicate that the Jacobi spectral collocation method is highly accurate and fast convergent for the generalized space-fractional Burgers' equation.展开更多
We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utiliz...We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.展开更多
We study the convergence and asymptotic compatibility of higher order collocation methods for nonlocal operators inspired by peridynamics,a nonlocal formulation of continuum mechanics.We prove that the methods are opt...We study the convergence and asymptotic compatibility of higher order collocation methods for nonlocal operators inspired by peridynamics,a nonlocal formulation of continuum mechanics.We prove that the methods are optimally convergent with respect to the polynomial degree of the approximation.A numerical method is said to be asymptotically compatible if the sequence of approximate solutions of the nonlocal problem converges to the solution of the corresponding local problem as the horizon and the grid sizes simultaneously approach zero.We carry out a calibration process via Taylor series expansions and a scaling of the nonlocal operator via a strain energy density argument to ensure that the resulting collocation methods are asymptotically compatible.We fnd that,for polynomial degrees greater than or equal to two,there exists a calibration constant independent of the horizon size and the grid size such that the resulting collocation methods for the nonlocal difusion are asymptotically compatible.We verify these fndings through extensive numerical experiments.展开更多
This paper develops fast multiscale collocation methods for a class of Fredholm integral equations of the second kind with singular kernels. A truncation strategy for the coefficient matrix of the corresponding discre...This paper develops fast multiscale collocation methods for a class of Fredholm integral equations of the second kind with singular kernels. A truncation strategy for the coefficient matrix of the corresponding discrete system is proposed, which forms a basis for fast algorithms. The convergence, stability and computational complexity of these algorithms are analyzed.展开更多
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen...In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.展开更多
In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is presented for solving systems of first-order ordinary differential equations. These so-called exponential Fourier collocation method...In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is presented for solving systems of first-order ordinary differential equations. These so-called exponential Fourier collocation methods are based on the variation-of-constants formula, incorporating a local Fourier expansion of the underlying problem with collocation meth- ods. We discuss in detail the connections of EFCMs with trigonometric Fourier colloca- tion methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs), Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an es- sential extension of these existing methods. We also analyse the accuracy in preserving the quadratic invariants and the Hamiltonian energy when the underlying system is a Hamiltonian system. Other properties of EFCMs including the order of approximations and the convergence of fixed-point iterations are investigated as well. The analysis given in this paper proves further that EFCMs can achieve arbitrarily high order in a routine manner which allows us to construct higher-order methods for solving systems of first- order ordinary differential equations conveniently. We also derive a practical fourth-order EFCM denoted by EFCM(2,2) as an illustrative example. The numerical experiments using EFCM(2,2) are implemented in comparison with an existing fourth-order HBVM, an energy-preserving collocation method and a fourth-order exponential integrator in the literature. The numerical results demonstrate the remarkable efficiency and robustness of the novel EFCM(2,2).展开更多
A moving collocation method is proposed and implemented to solve time fractional differential equations. The method is derived by writing the fractional differential equation into a form of time difference equation. T...A moving collocation method is proposed and implemented to solve time fractional differential equations. The method is derived by writing the fractional differential equation into a form of time difference equation. The method is stable and has a third-order convergence in space and first-order convergence in time for either linear or nonlinear equations. In addition, the method is used to simulate the blowup in the nonlinear equations.展开更多
For a simple model of a scalar wave equation with a random wave speed,Gottlieb and Xiu[Commun.Comput.Phys.,3(2008),pp.505-518]employed the generalized polynomial chaos(gPC)method and demonstrated that when uncertainty...For a simple model of a scalar wave equation with a random wave speed,Gottlieb and Xiu[Commun.Comput.Phys.,3(2008),pp.505-518]employed the generalized polynomial chaos(gPC)method and demonstrated that when uncertainty causes the change of characteristic directions,the resulting deterministic system of equations is a symmetric hyperbolic system with both positive and negative eigenvalues.Consequently,a consistent method of imposing the boundary conditions is proposed and its convergence is established under the assumption that the expansion coefficients decay fast asymptotically.In this work,we investigate stochastic collocation methods for the same type of scalar wave equation with random wave speed.It will be demonstrated that the rate of convergence depends on the regularity of the solutions;and the regularity is determined by the random wave speed and the initial and boundary data.Numerical examples are presented to support the analysis and also to show the sharpness of the assumptions on the relationship between the random wave speed and the initial and boundary data.An accuracy enhancement technique is investigated following the multi-element collocation method proposed by Foo,Wan and Karniadakis[J.Comput.Phys.,227(2008),pp.9572-9595].展开更多
In this paper,we analyse the stochastic collocation method for a linear Schr¨odinger equation with random inputs,where the randomness appears in the potential and initial data and is assumed to be dependent on a ...In this paper,we analyse the stochastic collocation method for a linear Schr¨odinger equation with random inputs,where the randomness appears in the potential and initial data and is assumed to be dependent on a random variable.We focus on the convergence rate with respect to the number of collocation points.Based on the interpolation theories,the convergence rate depends on the regularity of the solution with respect to the random variable.Hence,we investigate the dependence of the stochastic regularity of the solution on that of the random potential and initial data.We provide sufficient conditions on the random potential and initial data to ensure the smoothness of the solution and the spectral convergence.Finally,numerical results are presented to support our analysis.展开更多
In this paper we develop and analyze the stochastic collocation method for solving the time-dependent Maxwell’s equations with random coefficients and subject to random initial conditions.We provide a rigorous regula...In this paper we develop and analyze the stochastic collocation method for solving the time-dependent Maxwell’s equations with random coefficients and subject to random initial conditions.We provide a rigorous regularity analysis of the solution with respect to the random variables.To our best knowledge,this is the first theoretical results derived for the standard Maxwell’s equations with random inputs.The rate of convergence is proved depending on the regularity of the solution.Numerical results are presented to confirm the theoretical analysis.展开更多
This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel p(t, s) = (t - s)^-μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 20...This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel p(t, s) = (t - s)^-μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 2009, 233:938 950], the error analysis for this approach is carried out for 0 〈 μ 〈 1/2 under the assumption that the underlying solution is smooth. It is noted that there is a technical problem to extend the result to the case of Abel-type, i.e., μ = 1/2. In this work, we will not only extend the convergence analysis by Chen and Tang to the Abel-ype but also establish the error estimates under a more general regularity assumption on the exact solution.展开更多
A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of fun...A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm our theoretical analysis.展开更多
In this paper,a Chebyshev-collocation spectral method is developed for Volterra integral equations(VIEs)of second kind with weakly singular kernel.We first change the equation into an equivalent VIE so that the soluti...In this paper,a Chebyshev-collocation spectral method is developed for Volterra integral equations(VIEs)of second kind with weakly singular kernel.We first change the equation into an equivalent VIE so that the solution of the new equation possesses better regularity.The integral term in the resulting VIE is approximated by Gauss quadrature formulas using the Chebyshev collocation points.The convergence analysis of this method is based on the Lebesgue constant for the Lagrange interpolation polynomials,approximation theory for orthogonal polynomials,and the operator theory.The spectral rate of convergence for the proposed method is established in the L^(∞)-norm and weighted L^(2)-norm.Numerical results are presented to demonstrate the effectiveness of the proposed method.展开更多
In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathema...In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics,namely,susceptible(S),infected(I),treatment(T),and recovered(R).The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points.To indicate the usefulness of this method,we employ it in some cases.For error analysis of the method,the residual of the solutions is reviewed.The reported examples show that the method is reasonably efficient and accurate.展开更多
A numerical study is given on the spectral methods and the high order WENO finite difference scheme for the solution of linear and nonlinear hyperbolic partial differential equations with stationary and non-stationary...A numerical study is given on the spectral methods and the high order WENO finite difference scheme for the solution of linear and nonlinear hyperbolic partial differential equations with stationary and non-stationary singular sources.The singular source term is represented by theδ-function.For the approximation of theδ-function,the direct projection method is used that was proposed in[6].Theδ-function is constructed in a consistent way to the derivative operator.Nonlinear sine-Gordon equation with a stationary singular source was solved with the Chebyshev collocation method.Theδ-function with the spectral method is highly oscillatory but yields good results with small number of collocation points.The results are compared with those computed by the second order finite difference method.In modeling general hyperbolic equations with a non-stationary singular source,however,the solution of the linear scalar wave equation with the nonstationary singular source using the direct projection method yields non-physical oscillations for both the spectral method and the WENO scheme.The numerical artifacts arising when the non-stationary singular source term is considered on the discrete grids are explained.展开更多
The stochastic Galerkin and stochastic collocation method are two state-ofthe-art methods for solving partial differential equations(PDE)containing random coefficients.While the latter method,which is based on samplin...The stochastic Galerkin and stochastic collocation method are two state-ofthe-art methods for solving partial differential equations(PDE)containing random coefficients.While the latter method,which is based on sampling,can straightforwardly be applied to nonlinear stochastic PDEs,this is nontrivial for the stochastic Galerkin method and approximations are required.In this paper,both methods are used for constructing high-order solutions of a nonlinear stochastic PDE representing the magnetic vector potential in a ferromagnetic rotating cylinder.This model can be used for designing solid-rotor induction machines in various machining tools.A precise design requires to take ferromagnetic saturation effects into account and uncertainty on the nonlinear magnetic material properties.Implementation issues of the stochastic Galerkin method are addressed and a numerical comparison of the computational cost and accuracy of both methods is performed.The stochastic Galerkin method requires in general less stochastic unknowns than the stochastic collocation approach to reach a certain level of accuracy,however at a higher computational cost.展开更多
Stochastic collocation methods as a promising approach for solving stochastic partial differential equations have been developed rapidly in recent years.Similar to Monte Carlo methods,the stochastic collocation method...Stochastic collocation methods as a promising approach for solving stochastic partial differential equations have been developed rapidly in recent years.Similar to Monte Carlo methods,the stochastic collocation methods are non-intrusive in that they can be implemented via repetitive execution of an existing deterministic solver without modifying it.The choice of collocation points leads to a variety of stochastic collocation methods including tensor product method,Smolyak method,Stroud 2 or 3 cubature method,and adaptive Stroud method.Another type of collocation method,the probabilistic collocation method(PCM),has also been proposed and applied to flow in porous media.In this paper,we discuss these methods in terms of their accuracy,efficiency,and applicable range for flow in spatially correlated random fields.These methods are compared in details under different conditions of spatial variability and correlation length.This study reveals that the Smolyak method and the PCM outperform other stochastic collocation methods in terms of accuracy and efficiency.The random dimensionality in approximating input random fields plays a crucial role in the performance of the stochastic collocation methods.Our numerical experiments indicate that the required random dimensionality increases slightly with the decrease of correlation scale and moderately from one to multiple physical dimensions.展开更多
In this paper,we apply the collocation methods to a class of Volterra integral functional equations with multiple proportional delays(VIFEMPDs).We shall present the existence,uniqueness and regularity properties of an...In this paper,we apply the collocation methods to a class of Volterra integral functional equations with multiple proportional delays(VIFEMPDs).We shall present the existence,uniqueness and regularity properties of analytic solutions for this type of equations,and then analyze the convergence orders of the collocation solutions and give corresponding error estimates.The numerical results verify our theoretical analysis.展开更多
基金the National Natural Science Foundation of China for financial support to this work under Grant NSFC No.12072064.
文摘The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields.
基金NNSF of China, SF of SEC of China and SF of Wuhan University.
文摘This paper applies the singular integral operators, singular quadrature operators and discretization matrices associated with singular integral equations with Cauchy kernels, which are established in [1], to give a unified framework for various collocation methods of numerical solutions of singular integral equations with Cauchy kernels. Under the framework, the coincidence of the direct quadrature method and the indirect quadrature method is very simple and obvious.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11701358,11774218)。
文摘The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gauss-Lobatto collocation points. By means of the simplifed Jacobi operational matrix, we produce the diferentiation matrix and transfer the space-fractional Burgers' equation into a system of ordinary diferential equations that can be solved by the fourth-order Runge-Kutta method. The numerical simulations indicate that the Jacobi spectral collocation method is highly accurate and fast convergent for the generalized space-fractional Burgers' equation.
基金The NNSF (10371137 and 10201034) of Chinathe Foundation (20030558008) of Doctoral Program of National Higher Education, Guangdong Provincial Natural Science Foundation (1011170) of China and the Advanced Research Foundation of Zhongshan UniversityThe US National Science Foundation (9973427 and 0312113)NSF (10371122) of China and the Chinese Academy of Sciences under the program of "Hundred Distinguished Young Chinese Scientists."
文摘We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.
文摘We study the convergence and asymptotic compatibility of higher order collocation methods for nonlocal operators inspired by peridynamics,a nonlocal formulation of continuum mechanics.We prove that the methods are optimally convergent with respect to the polynomial degree of the approximation.A numerical method is said to be asymptotically compatible if the sequence of approximate solutions of the nonlocal problem converges to the solution of the corresponding local problem as the horizon and the grid sizes simultaneously approach zero.We carry out a calibration process via Taylor series expansions and a scaling of the nonlocal operator via a strain energy density argument to ensure that the resulting collocation methods are asymptotically compatible.We fnd that,for polynomial degrees greater than or equal to two,there exists a calibration constant independent of the horizon size and the grid size such that the resulting collocation methods for the nonlocal difusion are asymptotically compatible.We verify these fndings through extensive numerical experiments.
基金The NSF (10371137 and 10201034) of China,the Foundation (20030558008) of Doctoral Program of National Higher Education,Guangdong Provincial Natural Science Foundation (1011170) of China and the Foundation of Zhongshan University Advanced Research Center.
文摘This paper develops fast multiscale collocation methods for a class of Fredholm integral equations of the second kind with singular kernels. A truncation strategy for the coefficient matrix of the corresponding discrete system is proposed, which forms a basis for fast algorithms. The convergence, stability and computational complexity of these algorithms are analyzed.
文摘In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.
文摘In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is presented for solving systems of first-order ordinary differential equations. These so-called exponential Fourier collocation methods are based on the variation-of-constants formula, incorporating a local Fourier expansion of the underlying problem with collocation meth- ods. We discuss in detail the connections of EFCMs with trigonometric Fourier colloca- tion methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs), Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an es- sential extension of these existing methods. We also analyse the accuracy in preserving the quadratic invariants and the Hamiltonian energy when the underlying system is a Hamiltonian system. Other properties of EFCMs including the order of approximations and the convergence of fixed-point iterations are investigated as well. The analysis given in this paper proves further that EFCMs can achieve arbitrarily high order in a routine manner which allows us to construct higher-order methods for solving systems of first- order ordinary differential equations conveniently. We also derive a practical fourth-order EFCM denoted by EFCM(2,2) as an illustrative example. The numerical experiments using EFCM(2,2) are implemented in comparison with an existing fourth-order HBVM, an energy-preserving collocation method and a fourth-order exponential integrator in the literature. The numerical results demonstrate the remarkable efficiency and robustness of the novel EFCM(2,2).
基金supported by National Natural Science Foundation of China (Grant No.10901027)
文摘A moving collocation method is proposed and implemented to solve time fractional differential equations. The method is derived by writing the fractional differential equation into a form of time difference equation. The method is stable and has a third-order convergence in space and first-order convergence in time for either linear or nonlinear equations. In addition, the method is used to simulate the blowup in the nonlinear equations.
基金supported by Hong Kong Research Grant Council CERG grantsHong Kong Baptist University FRG grantsthe Natural Science Foundation of China(G10729101).
文摘For a simple model of a scalar wave equation with a random wave speed,Gottlieb and Xiu[Commun.Comput.Phys.,3(2008),pp.505-518]employed the generalized polynomial chaos(gPC)method and demonstrated that when uncertainty causes the change of characteristic directions,the resulting deterministic system of equations is a symmetric hyperbolic system with both positive and negative eigenvalues.Consequently,a consistent method of imposing the boundary conditions is proposed and its convergence is established under the assumption that the expansion coefficients decay fast asymptotically.In this work,we investigate stochastic collocation methods for the same type of scalar wave equation with random wave speed.It will be demonstrated that the rate of convergence depends on the regularity of the solutions;and the regularity is determined by the random wave speed and the initial and boundary data.Numerical examples are presented to support the analysis and also to show the sharpness of the assumptions on the relationship between the random wave speed and the initial and boundary data.An accuracy enhancement technique is investigated following the multi-element collocation method proposed by Foo,Wan and Karniadakis[J.Comput.Phys.,227(2008),pp.9572-9595].
基金supported by the National Key Research and Development Plan of China No.2017YFC0601801 and NSFC Project No.11871298.
文摘In this paper,we analyse the stochastic collocation method for a linear Schr¨odinger equation with random inputs,where the randomness appears in the potential and initial data and is assumed to be dependent on a random variable.We focus on the convergence rate with respect to the number of collocation points.Based on the interpolation theories,the convergence rate depends on the regularity of the solution with respect to the random variable.Hence,we investigate the dependence of the stochastic regularity of the solution on that of the random potential and initial data.We provide sufficient conditions on the random potential and initial data to ensure the smoothness of the solution and the spectral convergence.Finally,numerical results are presented to support our analysis.
基金This work was partially supported by National Natural Science Foundation of China(NSFC)11671340.The first author would like to thank The Statistical and Applied Math ematical Sciences Institute(SAMSI)for its kind support for his participation in the SAMSI QMC Monte Carlo held during August and December 2017.
文摘In this paper we develop and analyze the stochastic collocation method for solving the time-dependent Maxwell’s equations with random coefficients and subject to random initial conditions.We provide a rigorous regularity analysis of the solution with respect to the random variables.To our best knowledge,this is the first theoretical results derived for the standard Maxwell’s equations with random inputs.The rate of convergence is proved depending on the regularity of the solution.Numerical results are presented to confirm the theoretical analysis.
文摘This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel p(t, s) = (t - s)^-μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 2009, 233:938 950], the error analysis for this approach is carried out for 0 〈 μ 〈 1/2 under the assumption that the underlying solution is smooth. It is noted that there is a technical problem to extend the result to the case of Abel-type, i.e., μ = 1/2. In this work, we will not only extend the convergence analysis by Chen and Tang to the Abel-ype but also establish the error estimates under a more general regularity assumption on the exact solution.
基金This research is partially supported by the GRF grants of Hong Kong Research Grant Council the FRG grants of Hong Kong Baptist University+2 种基金 the US National Science Foundation through grant DMS-0612908 the Ministry of Education of China through the Changjiang Scholars program and Guangdong Provincial Government of China through the "Computational Science Innovative Research Team" program.
文摘A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm our theoretical analysis.
基金The authorswould like to thank the referees for the helpful suggestions.Thiswork is supported by National Science Foundation of China(Nos.91430104,11671157 and 11401347)Lingnan Normal University Project(No.2014YL1408)。
文摘In this paper,a Chebyshev-collocation spectral method is developed for Volterra integral equations(VIEs)of second kind with weakly singular kernel.We first change the equation into an equivalent VIE so that the solution of the new equation possesses better regularity.The integral term in the resulting VIE is approximated by Gauss quadrature formulas using the Chebyshev collocation points.The convergence analysis of this method is based on the Lebesgue constant for the Lagrange interpolation polynomials,approximation theory for orthogonal polynomials,and the operator theory.The spectral rate of convergence for the proposed method is established in the L^(∞)-norm and weighted L^(2)-norm.Numerical results are presented to demonstrate the effectiveness of the proposed method.
文摘In this work,the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus(COVID-19).The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics,namely,susceptible(S),infected(I),treatment(T),and recovered(R).The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points.To indicate the usefulness of this method,we employ it in some cases.For error analysis of the method,the residual of the solutions is reviewed.The reported examples show that the method is reasonably efficient and accurate.
基金support of this work from the National Science Foundation under Grant No.DMS-0608844.
文摘A numerical study is given on the spectral methods and the high order WENO finite difference scheme for the solution of linear and nonlinear hyperbolic partial differential equations with stationary and non-stationary singular sources.The singular source term is represented by theδ-function.For the approximation of theδ-function,the direct projection method is used that was proposed in[6].Theδ-function is constructed in a consistent way to the derivative operator.Nonlinear sine-Gordon equation with a stationary singular source was solved with the Chebyshev collocation method.Theδ-function with the spectral method is highly oscillatory but yields good results with small number of collocation points.The results are compared with those computed by the second order finite difference method.In modeling general hyperbolic equations with a non-stationary singular source,however,the solution of the linear scalar wave equation with the nonstationary singular source using the direct projection method yields non-physical oscillations for both the spectral method and the WENO scheme.The numerical artifacts arising when the non-stationary singular source term is considered on the discrete grids are explained.
文摘The stochastic Galerkin and stochastic collocation method are two state-ofthe-art methods for solving partial differential equations(PDE)containing random coefficients.While the latter method,which is based on sampling,can straightforwardly be applied to nonlinear stochastic PDEs,this is nontrivial for the stochastic Galerkin method and approximations are required.In this paper,both methods are used for constructing high-order solutions of a nonlinear stochastic PDE representing the magnetic vector potential in a ferromagnetic rotating cylinder.This model can be used for designing solid-rotor induction machines in various machining tools.A precise design requires to take ferromagnetic saturation effects into account and uncertainty on the nonlinear magnetic material properties.Implementation issues of the stochastic Galerkin method are addressed and a numerical comparison of the computational cost and accuracy of both methods is performed.The stochastic Galerkin method requires in general less stochastic unknowns than the stochastic collocation approach to reach a certain level of accuracy,however at a higher computational cost.
基金The authors are grateful to the supports by Natural Science Foundation of China through grant 50688901the Chinese National Basic Research Program through grant 2006CB705800+1 种基金the U.S.National Science Foundation through grant 0801425The first author acknowledges the support by China Scholarship Council through grant 2007100458.
文摘Stochastic collocation methods as a promising approach for solving stochastic partial differential equations have been developed rapidly in recent years.Similar to Monte Carlo methods,the stochastic collocation methods are non-intrusive in that they can be implemented via repetitive execution of an existing deterministic solver without modifying it.The choice of collocation points leads to a variety of stochastic collocation methods including tensor product method,Smolyak method,Stroud 2 or 3 cubature method,and adaptive Stroud method.Another type of collocation method,the probabilistic collocation method(PCM),has also been proposed and applied to flow in porous media.In this paper,we discuss these methods in terms of their accuracy,efficiency,and applicable range for flow in spatially correlated random fields.These methods are compared in details under different conditions of spatial variability and correlation length.This study reveals that the Smolyak method and the PCM outperform other stochastic collocation methods in terms of accuracy and efficiency.The random dimensionality in approximating input random fields plays a crucial role in the performance of the stochastic collocation methods.Our numerical experiments indicate that the required random dimensionality increases slightly with the decrease of correlation scale and moderately from one to multiple physical dimensions.
基金The first author is partially supported by forefront of science and interdisciplinary innovation projects of Jilin University and NNSF(No.11071102 of China).
文摘In this paper,we apply the collocation methods to a class of Volterra integral functional equations with multiple proportional delays(VIFEMPDs).We shall present the existence,uniqueness and regularity properties of analytic solutions for this type of equations,and then analyze the convergence orders of the collocation solutions and give corresponding error estimates.The numerical results verify our theoretical analysis.