期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An oxygenating colloidal bioink for the engineering of biomimetic tissue constructs 被引量:1
1
作者 Seol-Ha Jeong Jarno Hiemstra +9 位作者 Patrick V.Blokzijl Rebeca Damian-Ferrara Danilo Martins dos Santos Jéssica H.L.da Fonseca Min-Ho Kang Jihyun Kim Dilara Yilmaz-Aykut Mei L.L.Cham-Pérez Jeroen Leijten Su Ryon Shin 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期240-261,共22页
Ensuring a sufficient oxygen supply is pivotal for the success of bioprinting applications since it fosters tissue integration and natural regeneration.Variation in oxygen concentration among diverse tissues necessita... Ensuring a sufficient oxygen supply is pivotal for the success of bioprinting applications since it fosters tissue integration and natural regeneration.Variation in oxygen concentration among diverse tissues necessitates the precise recreation of tissue-specific oxygen levels in imprinted constructs to support the survival of targeted cells.Although oxygen-releasing biomaterials,such as oxygen-generating microparticles(OMPs),have shown promise for enhancing the oxygen supply of microenvironments in injured tissues,whether this approach is scalable for large tissues and whether tissue-specific bioinks with varying OMP concentrations remain printable remain unknown.This study addresses this critical gap by introducing an innovative class of engineered oxygenated bioinks that combine colloidal-based microgels with OMPs.We report that incorporating nanosized calcium peroxide(nCaO_(2))and manganese oxide nanosheets(nMnO_(2))into hydrophobic polymeric microparticles enables precise modulation of oxygen release while controlling hydrogen peroxide release.Moreover,the fabrication of oxygenating and cytocompatible colloidal gels is achieved using an aqueous two-phase system.This study thoroughly evaluates the fundamental characteristics of the resulting bioink,including its rheological behaviors,printability,shape fidelity,mechanical properties,and oxygen release properties.Moreover,this study demonstrates the macroscopic scalability and cytocompatibility of printed constructs produced via cell-laden oxygenating colloidal bioinks.By showcasing the effectiveness of extrusion-based bioprinting,this study underscores how it can be used to fabricate biomimetic tissues,indicating its potential for new applications.The findings presented here advance the bioprinting field by achieving scalability with both high cell viability and the possibility of mimicking specifically oxygenated tissues.This work thereby offers a promising avenue for the development of functional tissues with enhanced physiological relevance. 展开更多
关键词 3D bioprinting Bioink colloidal gels Extrusion printing Oxygen-generating microparticle
下载PDF
Biologically inspired anthraquinone redox centers and biomass graphene for renewable colloidal gels toward ultrahigh-performance flexible micro-supercapacitors
2
作者 Tiansheng Wang Shunyou Hu +9 位作者 Yuanyuan Hu Dong Wu Hao Wu Jinxu Huang Hao Wang Weiwei Zhao Wen Yu Mi Wang Jie Xu Jiaheng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第20期178-189,共12页
Biomass carbon and small redox biomolecules are attractive materials for green,sustainable energy storage devices owing to their environmentally friendly,low-cost,scalable,and novel sources.However,most devices manufa... Biomass carbon and small redox biomolecules are attractive materials for green,sustainable energy storage devices owing to their environmentally friendly,low-cost,scalable,and novel sources.However,most devices manufactured using these materials have low specific capacitance,poor cycle stability,short lifetime,complexity,and low precision of device fabrication.Herein,we report the directed self-assembly of mononuclear anthraquinone(MAQ)derivatives and porous lignin-based graphene oxide(PLGO)into a renewable colloidal gel through noncovalent interactions.These self-assembled gel electrode materials exhibited high capacitance(484.8 F g^(−1) at a current density of 1 A g^(−1))and could be further printed as flexible micro-supercapacitors(FMSCs)with arbitrary patterns and a relatively high resolution on specific substrates.The FMSCs exhibited excellent areal capacitance(43.6 mF cm^(−2)),energy and power densities(6.1μWh cm^(−2) and 50μW cm^(−2),respectively),and cycle stability(>10,000 cycles).Furthermore,the printed FMSCs and integrated FMSC arrays exhibited remarkable flexibility while maintaining a stable capacitance.The proposed approach can be applied to other quinone biomolecules and biomass-based carbon materials.This study provides a basis for fabricating green and sustainable energy storage device architectures with high capacitance,long-term cycling,high scalability,and high precision. 展开更多
关键词 Biomass carbon Mononuclear anthraquinone Noncovalent interactions Renewable colloidal gel Flexible micro-supercapacitors
原文传递
Examination of literature on colloidal dispersion gels for oil recovery 被引量:2
3
作者 Dongmei Wang Randall S.Seright 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1097-1114,共18页
This paper examines literature that claims,suggests,or implies that floods with"colloidal dispersion gels"(CDGs)are superior to polymer floods for oil recovery.The motivation for this report is simple.If CDG... This paper examines literature that claims,suggests,or implies that floods with"colloidal dispersion gels"(CDGs)are superior to polymer floods for oil recovery.The motivation for this report is simple.If CDGs can propagate deep into the porous rock of a reservoir,and at the same time,provide resistance factors or residual resistance factors that are greater than those for the same polymer formulation without the crosslinker,then CDGs should be used in place of polymer solutions for most/all polymer,surfactant,and ASP floods.In contrast,if the claims are not valid,(1)money spent on crosslinker in the CDG formulations was wasted,(2)the mobility reduction/mobility control for CDG field projects was under-designed,and(3)reservoir performance could have been damaged by excessive loss of polymer,face-plugging by gels,and/or excessive fracture extension.From this review,the clear answer is that there is no credible evidence that colloidal dispersion gels can propagate deep into the porous rock of a reservoir,and at the same time,provide resistance factors or residual resistance factors that are greater than those for the same polymer formulation without the crosslinker.CDGs have been sold using a number of misleading and invalid arguments.Very commonly,Hall plots are claimed to demonstrate that CDGs provide higher resistance factors and/or residual resistance factors than normal polymer solutions.However,because Hall plots only monitor injection pressures at the wellbore,they reflect the composite of face plugging/formation damage,in-situ mobility changes,and fracture extension.Hall plots cannot distinguish between these effects-so they cannot quantify in situ resistance factors or residual resistance factors.Laboratory studiesdwhere CDG gelants were forced through short cores during 2-3 h-have incorrectly been cited as proof that CDGs will propagate deep(hundreds of feet)into the porous rock of a reservoir over the course of months.In contrast,most legitimate laboratory studies reveal that the gelation time for CDGs is a day or less and that CDGs will not propagate through porous rock after gelation.A few cases were noted where highly depleted Al and/or HPAM fluids passed through cores after one week of aging.Details about these particular formulations/experiments were sparse and questions remain about their reproducibility.No credible evidence indicates that the CDG can propagate deep into a reservoir(over the course of weeks or months)and still provide a greater effect than that from the polymer alone.With one exception,aluminum from the CDG was never reported to be produced in a field application.In the exception,Chang reported producing 1-20%of the injected aluminum concentration.The available evidence suggests that some free(unreacted)HPAM and aluminum that was associated with the original CDG can propagate through porous media.However,there is no evidence that this HPAM or aluminum provides mobility reduction greater than that for the polymer formulation without crosslinker. 展开更多
关键词 Conformance improvement colloidal dispersion gels Polymer flooding Mobility control
下载PDF
3D Nanocomposite Hydrogel Scaffolds Fabricated by Rapid Prototyping for Bone Tissue Engineering 被引量:1
4
作者 许杜亮 张建光 莫秀梅 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期630-634,共5页
Colloidal gels made of oppositely charged nanoparticles are a novel class of hydrogels and can exhibit pseudoplastic behavior which will enable them to mold easily into specific shapes.These moldable gels can be used ... Colloidal gels made of oppositely charged nanoparticles are a novel class of hydrogels and can exhibit pseudoplastic behavior which will enable them to mold easily into specific shapes.These moldable gels can be used as building blocks to self-assemble into integral scaffolds from bottom to up through electrostatic forces.However,they are too weak to maintain scaffold morphology just depending on interparticle interactions such as Van der Waals attraction and electrostatic forces especially for bone tissue engineering.In this study,oppositely charged gelatin nanoparticles were firstly prepared by two-step desolvation method,followed by the mixture with water to form colloid gels.To solve the problem of weak mechanical performance of colloid gels, gelatin macromolecules were introduced into the prepared gels to form blend gels.The blend gels can be easily processed into three-dimensional( 3D) porous scaffolds via motor assisted microsyringe( MAM)system,a nozzle-based rapid prototyping technology,under mild conditions.After fabrication the scaffolds were crosslinked by glutaraldehyde( GA,25% solution in water by weight),then the crosslinked gelatin macromolecules network could form to improve the mechanical properties of colloid gels.The average particle size and zeta potential of gelatin nanoparticles were measured by NanoZS instrument.The morphology and microstructures of scaffolds were characterized by macroscopic images.The mechanical properties of the scaffolds were studied by a universal material testing machine. 展开更多
关键词 colloidal gels rapid prototyping gelATIN NANOPARTICLES SCAFFOLD bone tissue engineering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部