期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evolution of fracture permeability due to co-colloidal bacterial transport in a coupled fracture-skin-matrix system 被引量:1
1
作者 N.Natarajan G.Suresh Kumar 《Geoscience Frontiers》 SCIE CAS 2012年第4期503-514,共12页
A numerical model is developed for investigating the evolution of fracture permeability in a coupled fracture-matrix system in the presence of fracture-skin with simultaneous colloidal and bacte- rial transport, by ta... A numerical model is developed for investigating the evolution of fracture permeability in a coupled fracture-matrix system in the presence of fracture-skin with simultaneous colloidal and bacte- rial transport, by taking into account the effects of thermal stress and silica precipitation/dissolution, which is computed using linear reaction kinetics. The non-linear coupled equations are numerically modeled using the fully implicit finite difference method and a constant continuous source is adopted while modeling thermal, contaminant, colloidal and bacterial transport. Due to co-colloid bacterial trans- port under non-isothermal conditions, in a coupled fracture-skin-matrix system, the fracture apertures vary spatially, with a corresponding pressure variation for a constant discharge. A series of numerical experiments were conducted for analyzing the spatial variation of fracture aperture in response to the combined effects of thermal stress, silica precipitation/dissolution, and simultaneous colloidal and bacte- rial transport in the presence of the fracture-skin. The simulation results suggest that temperature and contaminant concentration of the mobile fluid within the fracture increases with reduction in initial frac- ture aperture. The pattern of variation followed by the fracture aperture is nearly the same in the presence and absence of bacterial transport but the magnitude of the fracture aperture is low under the influence of bacterial transport. The variation in the fracture aperture resulting from precipitation-dissolution and thermoelastic stress is significant when the fracture aperture is very low and reduces with increment in fracture aperture. The variation in fracture aperture and pressure remains the same for both undersaturated and supersaturated fluid entering the fracture due to the influence of bacterial transport at the inlet of the fracture. 展开更多
关键词 Bacterial transport colloidal transport Fracture permeability Fracture skin Precipitation-dissolution
下载PDF
Effect of Clay Minerals on Transport of Surfactants Dispersed Multiwalled Carbon Nanotubes in Porous Media
2
作者 ZHANG Wei ZHANG Fawang +3 位作者 HAN Zhantao Lü Xiaoli LIN Daohui David WERNER 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期135-144,共10页
Clay minerals can hinder the transport of various contaminants in soil and aquifer, but how clay minerals affect the transport of nanoparticles in aquifers has not been investigated in depth. In this paper, the transp... Clay minerals can hinder the transport of various contaminants in soil and aquifer, but how clay minerals affect the transport of nanoparticles in aquifers has not been investigated in depth. In this paper, the transport of surfactants dispersed multi-walled carbon nanotubes(MWCNTs) in welldefined quartz sand and mixtures of quartz sand and clay minerals(kaolinite and montmorillonite) with varying ionic strengths was studied. Sodium dodecyl benzenesulfonate(SDBS) and octyl-phenolethoxylate(TX100) MWCNT suspensions can migrate through quartz sand easily, but the presence of less than 2% w/w clay minerals in quartz sand can significantly hinder the transport of MWCNT suspensions, especially at high ion strength(0.6 m M CaCl2). The inhibition mechanism of clay minerals for surfactant-dispersed MWCNTs in porous media is the interception of MWCNTs. Kaolinite has stronger inhibition effect for MWCNTs transport than montmorillonite because more kaolinite can be retained in the quartz sand. Adsorption of surfactants by clay minerals does not affect the transport of MWCNTs significantly. This finding is important for the environmental assessment of MWCNT transport risks in soils and aquifers. 展开更多
关键词 Multi-walled carbon nanotubes clay mineral SURFACTANT colloid transport porous media
下载PDF
Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil 被引量:4
3
作者 Zhuo Guan Xiang-Yu Tang +3 位作者 Taku Nishimura Hidetaka Katou Hui-Yun Liu Jing Qing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第2期197-206,共10页
Soil contamination by diesel has been often reported as a result of accidental spillage,leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydr... Soil contamination by diesel has been often reported as a result of accidental spillage,leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates(LAS, an anionic surfactant) was conducted for intact columns(15 cm in diameter and 12 cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes(representing the diesel) varied with the depth of the topsoil in the range of 14%–96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores(30–250 μm in diameter)was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores. 展开更多
关键词 Surfactant-enhanced flushing DIESEL Colloid transport MACROPORES Pore structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部