An identity-based proxy re-encryption scheme(IB-PRE)allows a semi-trusted proxy to convert an encryption under one identity to another without revealing the underlying message.Due to the fact that the proxy was semi-t...An identity-based proxy re-encryption scheme(IB-PRE)allows a semi-trusted proxy to convert an encryption under one identity to another without revealing the underlying message.Due to the fact that the proxy was semi-trusted,it should place as little trust as necessary to allow it to perform the translations.In some applications such as distributed file system,it demands the adversary cannot identify the sender and recipient’s identities.However,none of the exiting IB-PRE schemes satisfy this requirement.In this work,we first define the security model of key-private IB-PRE.Finally,we propose the first key-private IB-PRE scheme.Our scheme is chosen plaintext secure(CPA)and collusion resistant in the standard model.展开更多
Digital fingerprinting is an emerging technology to protect multimedia data from piracy, where each distributed copy is labeled with unique identification information. In coded fingerprinting, each codeword of the ant...Digital fingerprinting is an emerging technology to protect multimedia data from piracy, where each distributed copy is labeled with unique identification information. In coded fingerprinting, each codeword of the anti-collusion code is used to represent a user's fingerprint. In real-world applications, the number of potential users can be very large and hence, the used anti- collusion code should be easy to construct and have as many codewords as possible. This paper proposes a simple coded fingerprinting scheme, where the anti- collusion code is constructed with an identity matrix. The main advantage of our scheme is its simplicity, as a large number of fingerprints can easily be generated to accommodate a large number of users. To improve collusion resistance, some transformations are performed on the original fingerprint in the embedding phase and the corresponding inverse transformations are performed on the extracted sequence in the detection phase.展开更多
基金This work is supported by the National Natural Science Foundation of China(Nos.61702236,61672270,61602216,61872181)Changzhou Sci&Tech Program(Grant No.CJ20179027).
文摘An identity-based proxy re-encryption scheme(IB-PRE)allows a semi-trusted proxy to convert an encryption under one identity to another without revealing the underlying message.Due to the fact that the proxy was semi-trusted,it should place as little trust as necessary to allow it to perform the translations.In some applications such as distributed file system,it demands the adversary cannot identify the sender and recipient’s identities.However,none of the exiting IB-PRE schemes satisfy this requirement.In this work,we first define the security model of key-private IB-PRE.Finally,we propose the first key-private IB-PRE scheme.Our scheme is chosen plaintext secure(CPA)and collusion resistant in the standard model.
文摘Digital fingerprinting is an emerging technology to protect multimedia data from piracy, where each distributed copy is labeled with unique identification information. In coded fingerprinting, each codeword of the anti-collusion code is used to represent a user's fingerprint. In real-world applications, the number of potential users can be very large and hence, the used anti- collusion code should be easy to construct and have as many codewords as possible. This paper proposes a simple coded fingerprinting scheme, where the anti- collusion code is constructed with an identity matrix. The main advantage of our scheme is its simplicity, as a large number of fingerprints can easily be generated to accommodate a large number of users. To improve collusion resistance, some transformations are performed on the original fingerprint in the embedding phase and the corresponding inverse transformations are performed on the extracted sequence in the detection phase.