基于条形码的结帐系统存在操作繁琐等一些问题,为了解决零售业结账服务中排队的难题,提出一种以SURF(Speeded Up Robust Features)特征匹配为主,主颜色特征数字编码分类、形状特征数字编码分类为辅的商品快速识别算法。基于特征的方法...基于条形码的结帐系统存在操作繁琐等一些问题,为了解决零售业结账服务中排队的难题,提出一种以SURF(Speeded Up Robust Features)特征匹配为主,主颜色特征数字编码分类、形状特征数字编码分类为辅的商品快速识别算法。基于特征的方法具有压缩信息量、精度高等优点,成为目前研究的热点。但是传统图像特征识别算法,存在特征维度多、计算量大、运行速度慢等缺点,限制了其应用。本文将其中的主颜色和形状特征进行数字编码分类,之后利用高效识别算法SURF进行准确识别,很好地克服了以上缺点。实验表明,本文算法运行速度快,识别性能好,为零售业的结账服务提供了便利。展开更多
文摘基于条形码的结帐系统存在操作繁琐等一些问题,为了解决零售业结账服务中排队的难题,提出一种以SURF(Speeded Up Robust Features)特征匹配为主,主颜色特征数字编码分类、形状特征数字编码分类为辅的商品快速识别算法。基于特征的方法具有压缩信息量、精度高等优点,成为目前研究的热点。但是传统图像特征识别算法,存在特征维度多、计算量大、运行速度慢等缺点,限制了其应用。本文将其中的主颜色和形状特征进行数字编码分类,之后利用高效识别算法SURF进行准确识别,很好地克服了以上缺点。实验表明,本文算法运行速度快,识别性能好,为零售业的结账服务提供了便利。