An efficient method that utilizes simple techniques,easy operation,and low-cost production to create flexible graphene-based materials is a worthy practical challenge.A rapid strategy for preparing flexible,functional...An efficient method that utilizes simple techniques,easy operation,and low-cost production to create flexible graphene-based materials is a worthy practical challenge.A rapid strategy for preparing flexible,functional graphene oxide(GO)is introduced using GO-ethanol dispersion filtration.The filtration process is highly efficient and drying time is significantly reduced by employing ethanol as solvent,due to the fact that ethanol is a volatile liquid.Freestanding GO papers can be harvested with ultralarge size(700 cm2),color variety,and writable characteristics.After reduction,N-doped graphene(NDG)papers still maintain good foldability with improved electric conductivity and porous structure.When used as an electrode for a supercapacitor,the flexible NDG paper device demonstrates good electrochemical performance even with size expansion and extreme double folding.Moreover,this NDG paper capacitor device shows a good electrosorption performance for capacitive deionization of sulfate and chromate in groundwater system.These flexible GO and NDG papers promise potential to facilitate the production of graphene-based materials for practical applications in energy and environmental related fields.展开更多
Papermaking technology is one of the four great inventions of China and also one of the outstanding inventions of civilization throughout human history.In A.D.105,Cai Lun,based on his study and analysis of his predece...Papermaking technology is one of the four great inventions of China and also one of the outstanding inventions of civilization throughout human history.In A.D.105,Cai Lun,based on his study and analysis of his predecessors’technology on producing silk crystals。展开更多
Electrocoagulation of pulp and paper industry effluent with SS-304 electrode has been carried out under varying process variable such as pH, current density, time and dose of electrolyte to find out the optimum condit...Electrocoagulation of pulp and paper industry effluent with SS-304 electrode has been carried out under varying process variable such as pH, current density, time and dose of electrolyte to find out the optimum conditions. Maximum reduction efficiency of Chemical Oxygen Demand (COD) 82% and color more than 99% from pulp and paper industry wastewater at the following conditions pH = 7, current density = 24.80 mA/cm2 time = 40 min and dose of electrolytes = 1.0 g/L. Moreover, effects of electrolytes dosage on electricity consumption were observed and found to be that NaCl is better in comparison of Na2SO4 in respect of lower down the electricity consumption. But application of NaCl causes the formation of hazardous compounds as secondary pollutants within treated water. Therefore, Na2SO4 could be a potent replacement of NaCl to enhance the conductivity of paper industry effluent treated by EC process. The treated water has been compared with standard of Central Pollution control board (CPCB) and World Health organization, and found to be suitable for the reuse in irrigation.展开更多
基金This study was supported by the National Key R&D Program of China(2016YFE0102000)the National Natural Science Foundation of China(41672236,41807184)Fang Zhang also acknowledges the support of Young Elite Scientist Sponsorship Program by CAST(2015QNRC001).
文摘An efficient method that utilizes simple techniques,easy operation,and low-cost production to create flexible graphene-based materials is a worthy practical challenge.A rapid strategy for preparing flexible,functional graphene oxide(GO)is introduced using GO-ethanol dispersion filtration.The filtration process is highly efficient and drying time is significantly reduced by employing ethanol as solvent,due to the fact that ethanol is a volatile liquid.Freestanding GO papers can be harvested with ultralarge size(700 cm2),color variety,and writable characteristics.After reduction,N-doped graphene(NDG)papers still maintain good foldability with improved electric conductivity and porous structure.When used as an electrode for a supercapacitor,the flexible NDG paper device demonstrates good electrochemical performance even with size expansion and extreme double folding.Moreover,this NDG paper capacitor device shows a good electrosorption performance for capacitive deionization of sulfate and chromate in groundwater system.These flexible GO and NDG papers promise potential to facilitate the production of graphene-based materials for practical applications in energy and environmental related fields.
文摘Papermaking technology is one of the four great inventions of China and also one of the outstanding inventions of civilization throughout human history.In A.D.105,Cai Lun,based on his study and analysis of his predecessors’technology on producing silk crystals。
文摘Electrocoagulation of pulp and paper industry effluent with SS-304 electrode has been carried out under varying process variable such as pH, current density, time and dose of electrolyte to find out the optimum conditions. Maximum reduction efficiency of Chemical Oxygen Demand (COD) 82% and color more than 99% from pulp and paper industry wastewater at the following conditions pH = 7, current density = 24.80 mA/cm2 time = 40 min and dose of electrolytes = 1.0 g/L. Moreover, effects of electrolytes dosage on electricity consumption were observed and found to be that NaCl is better in comparison of Na2SO4 in respect of lower down the electricity consumption. But application of NaCl causes the formation of hazardous compounds as secondary pollutants within treated water. Therefore, Na2SO4 could be a potent replacement of NaCl to enhance the conductivity of paper industry effluent treated by EC process. The treated water has been compared with standard of Central Pollution control board (CPCB) and World Health organization, and found to be suitable for the reuse in irrigation.