为了提取到更加准确、丰富的叶片病斑的颜色特征和空间特征,解决病害严重程度细粒度分类粗糙、识别准确率低等问题,提出一种融合颜色掩膜网络和自注意力机制(Fusion color mask and self-attention network,FCMSAN)的病害识别方法。FCM...为了提取到更加准确、丰富的叶片病斑的颜色特征和空间特征,解决病害严重程度细粒度分类粗糙、识别准确率低等问题,提出一种融合颜色掩膜网络和自注意力机制(Fusion color mask and self-attention network,FCMSAN)的病害识别方法。FCMSAN由颜色掩膜网络(Color mask network,CMN)和融合通道自适应的自注意力网络(Channel adaptive self-attention network,CASAN)构成。CMN通过学习叶片病斑颜色区域信息提高模型提取颜色特征的能力;CASAN能够提取全局范围内的病斑特征,同时加入病斑的位置特征和通道自适应特征,可以精确、全面定位叶片病斑区域。最后通过特征转换融合模块(Transfer fusion layer,TFL)将CMN和CASAN进行融合。经实验证明,FCMSAN在61类农作物病虫害细粒度识别中,Top-1的分类准确率达到87.97%,平均F1值达到84.48%。最后通过可视化分析,验证了本文方法在病害识别中的有效性。展开更多