Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based di...Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset.展开更多
The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l...The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.展开更多
This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hu...This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hue and saturation to extract and represent color information of an image is presented. We also improve the Euclidean-distance algorithm by adding Center of Color to it. The experiment shows modifications made to Euclidean-distance signif-icantly elevate the quality and efficiency of retrieval.展开更多
A novel image retrieval approach based on color features and anisotropic directional information is proposed for content based image retrieval systems (CBIR). The color feature is described by the color histogram ...A novel image retrieval approach based on color features and anisotropic directional information is proposed for content based image retrieval systems (CBIR). The color feature is described by the color histogram (CH), which is translation and rotation invariant. However, the CH does not contain spatial information which is very important for the image retrieval. To overcome this shortcoming, the subband energy of the lifting directionlet transform (L-DT) is proposed to describe the directional information, in which L-DT is characterized by multi-direction and anisotropic basis functions compared with the wavelet transform. A global similarity measure is designed to implement the fusion of both color feature and anisotropic directionality for the retrieval process. The retrieval experiments using a set of COREL images demonstrate that the higher query precision and better visual effect can be achieved.展开更多
In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact t...In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact that only a relatively low number of distinct values of a particular visual feature is present in most images. To extract color feature and build indices into our image database we take into consideration factors such as human color perception and perceptual range, and the image is partitioned into a set of regions by using a simple classifying scheme. The compact color feature vector and the spatial color histogram, which are extracted from the seqmented image region, are used for representing the color and spatial information in the image. We have also developed the region-based distance measures to compare the similarity of two images. Extensive tests on a large image collection were conducted to demonstrate the effectiveness of the proposed approach.展开更多
<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient to...<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>展开更多
A new techinque for color based image retrieval is proposed. In this technique, the whole spectrum of a color image is divided into several sub ranges according to human visual characteristics. Then for each sub ra...A new techinque for color based image retrieval is proposed. In this technique, the whole spectrum of a color image is divided into several sub ranges according to human visual characteristics. Then for each sub range, the cumulative histogram is used for similarity matching. It is shown that the color contents of image can be well captured by the sub range cumulative histogram. The new technique has been tested and compared with conventional techniques with the help of a database of 400 images of real flowers, which are quite complicated in color contents. Some satisfactory retrieval results are presented.展开更多
The technique of image retrieval is widely used in science experiment, military affairs, public security, advertisement, family entertainment, library and so on. The existing algorithms are mostly based on the charact...The technique of image retrieval is widely used in science experiment, military affairs, public security, advertisement, family entertainment, library and so on. The existing algorithms are mostly based on the characteristics of color, texture, shape and space relationship. This paper introduced an image retrieval algorithm, which is based on the matching of weighted EMD(Earth Mover’s Distance) distance and texture distance. EMD distance is the distance between the histograms of two images in HSV(Hue, Saturation, Value) color space, and texture distance is the L1 distance between the texture spectra of two images. The experimental results show that the retrieval rate can be increased obviously by using the proposed algorithm.展开更多
Content based image retrieval(CBIR)techniques have been widely deployed in many applications for seeking the abundant information existed in images.Due to large amounts of storage and computational requirements of CBI...Content based image retrieval(CBIR)techniques have been widely deployed in many applications for seeking the abundant information existed in images.Due to large amounts of storage and computational requirements of CBIR,outsourcing image search work to the cloud provider becomes a very attractive option for many owners with small devices.However,owing to the private content contained in images,directly outsourcing retrieval work to the cloud provider apparently bring about privacy problem,so the images should be protected carefully before outsourcing.This paper presents a secure retrieval scheme for the encrypted images in the YUV color space.With this scheme,the discrete cosine transform(DCT)is performed on the Y component.The resulting DC coefficients are encrypted with stream cipher technology and the resulting AC coefficients as well as other two color components are encrypted with value permutation and position scrambling.Then the image owner transmits the encrypted images to the cloud server.When receiving a query trapdoor form on query user,the server extracts AC-coefficients histogram from the encrypted Y component and extracts two color histograms from the other two color components.The similarity between query trapdoor and database image is measured by calculating the Manhattan distance of their respective histograms.Finally,the encrypted images closest to the query image are returned to the query user.展开更多
A novel content based image retrieval (CBIR) algorithmusing relevant feedback is presented. The proposed frameworkhas three major contributions: a novel feature descriptor calledcolor spectral histogram (CSH) to ...A novel content based image retrieval (CBIR) algorithmusing relevant feedback is presented. The proposed frameworkhas three major contributions: a novel feature descriptor calledcolor spectral histogram (CSH) to measure the similarity betweenimages; two-dimensional matrix based indexing approach proposedfor short-term learning (STL); and long-term learning (LTL).In general, image similarities are measured from feature representationwhich includes color quantization, texture, color, shapeand edges. However, CSH can describe the image feature onlywith the histogram. Typically the image retrieval process starts byfinding the similarity between the query image and the imagesin the database; the major computation involved here is that theselection of top ranking images requires a sorting algorithm to beemployed at least with the lower bound of O(n log n). A 2D matrixbased indexing of images can enormously reduce the searchtime in STL. The same structure is used for LTL with an aim toreduce the amount of log to be maintained. The performance ofthe proposed framework is analyzed and compared with the existingapproaches, the quantified results indicates that the proposedfeature descriptor is more effectual than the existing feature descriptorsthat were originally developed for CBIR. In terms of STL,the proposed 2D matrix based indexing minimizes the computationeffort for retrieving similar images and for LTL, the proposed algorithmtakes minimum log information than the existing approaches.展开更多
Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the ...Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the shortcoming of conventional color histogram-based image retrieval methods, an image retrieval method based on Radon Transform (RT) is proposed. In order to reduce the computational complexity, wavelet decomposition is used to compress image data. Firstly, images are decomposed by Mallat algorithm. The low-frequency components are then projected by RT to generate the spatial color feature. Finally the moment feature matrices which are saved along with original images are obtained. Experimental results show that the RT based retrieval is more accurate and efficient than traditional color histogram-based method in case that there are obvious objects in images. Further more, RT based retrieval runs significantly faster than the traditional color histogram methods.展开更多
In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image ...In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms.展开更多
This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac...This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.展开更多
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.展开更多
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower...Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).展开更多
This paper presents an efficient image feature representation method, namely angle structure descriptor(ASD), which is built based on the angle structures of images. According to the diversity in directions, angle str...This paper presents an efficient image feature representation method, namely angle structure descriptor(ASD), which is built based on the angle structures of images. According to the diversity in directions, angle structures are defined in local blocks. Combining color information in HSV color space, we use angle structures to detect images. The internal correlations between neighboring pixels in angle structures are explored to form a feature vector. With angle structures as bridges, ASD extracts image features by integrating multiple information as a whole, such as color, texture, shape and spatial layout information. In addition, the proposed algorithm is efficient for image retrieval without any clustering implementation or model training. Experimental results demonstrate that ASD outperforms the other related algorithms.展开更多
Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color...Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.展开更多
The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color His...The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color Histogram(GCH)and texture features based on Gray Level Co-occurrence Matrix(GLCM).In order to obtain the effective and representative features of the image,we adopt the fuzzy mathematical algorithm in the process of color feature extraction and texture feature extraction respectively.And we combine the fuzzy color feature vector with the fuzzy texture feature vector to form the comprehensive fuzzy feature vector of the image according to a certain way.Image feature matching mainly depends on the similarity between two image feature vectors.In this paper,we propose a novel similarity measure method based on k-Nearest Neighbors(kNN)and fuzzy mathematical algorithm(SBkNNF).Finding out the k nearest neighborhood images of the query image from the image data set according to an appropriate similarity measure method.Using the k similarity values between the query image and its k neighborhood images to constitute the new k-dimensional fuzzy feature vector corresponding to the query image.And using the k similarity values between the retrieved image and the k neighborhood images of the query image to constitute the new k-dimensional fuzzy feature vector corresponding to the retrieved image.Calculating the similarity between the two kdimensional fuzzy feature vector according to a certain fuzzy similarity algorithm to measure the similarity between the query image and the retrieved image.Extensive experiments are carried out on three data sets:WANG data set,Corel-5k data set and Corel-10k data set.The experimental results show that the outperforming retrieval performance of our proposed CBIR system with the other CBIR systems.展开更多
With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expecte...With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expected data with privacy-preserving is still a challenging in the encryption image data retrieval.Towards this goal,this paper proposes a ciphertext image retrieval method based on SimHash in cloud computing.Firstly,we extract local feature of images,and then cluster the features by K-means.Based on it,the visual word codebook is introduced to represent feature information of images,which hashes the codebook to the corresponding fingerprint.Finally,the image feature vector is generated by SimHash searchable encryption feature algorithm for similarity retrieval.Extensive experiments on two public datasets validate the effectiveness of our method.Besides,the proposed method outperforms one popular searchable encryption,and the results are competitive to the state-of-the-art.展开更多
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
文摘Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset.
文摘The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.
基金Supported by the Project of Science & Technology Depart ment of Shanghai (No.055115001)
文摘This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hue and saturation to extract and represent color information of an image is presented. We also improve the Euclidean-distance algorithm by adding Center of Color to it. The experiment shows modifications made to Euclidean-distance signif-icantly elevate the quality and efficiency of retrieval.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA12Z1362007AA12Z223)+2 种基金the National Basic Research Program of China (973Program) (2006CB705707)the National Natural Science Foundation of China (60672126, 60607010)the Program for Cheung Kong Scholars and Innovative Research Team in University (IRT0645)
文摘A novel image retrieval approach based on color features and anisotropic directional information is proposed for content based image retrieval systems (CBIR). The color feature is described by the color histogram (CH), which is translation and rotation invariant. However, the CH does not contain spatial information which is very important for the image retrieval. To overcome this shortcoming, the subband energy of the lifting directionlet transform (L-DT) is proposed to describe the directional information, in which L-DT is characterized by multi-direction and anisotropic basis functions compared with the wavelet transform. A global similarity measure is designed to implement the fusion of both color feature and anisotropic directionality for the retrieval process. The retrieval experiments using a set of COREL images demonstrate that the higher query precision and better visual effect can be achieved.
文摘In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact that only a relatively low number of distinct values of a particular visual feature is present in most images. To extract color feature and build indices into our image database we take into consideration factors such as human color perception and perceptual range, and the image is partitioned into a set of regions by using a simple classifying scheme. The compact color feature vector and the spatial color histogram, which are extracted from the seqmented image region, are used for representing the color and spatial information in the image. We have also developed the region-based distance measures to compare the similarity of two images. Extensive tests on a large image collection were conducted to demonstrate the effectiveness of the proposed approach.
文摘<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>
文摘A new techinque for color based image retrieval is proposed. In this technique, the whole spectrum of a color image is divided into several sub ranges according to human visual characteristics. Then for each sub range, the cumulative histogram is used for similarity matching. It is shown that the color contents of image can be well captured by the sub range cumulative histogram. The new technique has been tested and compared with conventional techniques with the help of a database of 400 images of real flowers, which are quite complicated in color contents. Some satisfactory retrieval results are presented.
文摘The technique of image retrieval is widely used in science experiment, military affairs, public security, advertisement, family entertainment, library and so on. The existing algorithms are mostly based on the characteristics of color, texture, shape and space relationship. This paper introduced an image retrieval algorithm, which is based on the matching of weighted EMD(Earth Mover’s Distance) distance and texture distance. EMD distance is the distance between the histograms of two images in HSV(Hue, Saturation, Value) color space, and texture distance is the L1 distance between the texture spectra of two images. The experimental results show that the retrieval rate can be increased obviously by using the proposed algorithm.
基金This work is supported in part by the National Natural Science Foundation of China under grant numbers 61672294,61502242,61702276,U1536206,U1405254,61772283,61602253,61601236 and 61572258,in part by Six peak talent project of Jiangsu Province(R2016L13),in part by National Key R&D Program of China under grant 2018YFB1003205,in part by NRF-2016R1D1A1B03933294,in part by the Jiangsu Basic Research Programs-Natural Science Foundation under grant numbers BK20150925 and BK20151530,in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund,in part by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)fund,China.Zhihua Xia is supported by BK21+program from the Ministry of Education of Korea.
文摘Content based image retrieval(CBIR)techniques have been widely deployed in many applications for seeking the abundant information existed in images.Due to large amounts of storage and computational requirements of CBIR,outsourcing image search work to the cloud provider becomes a very attractive option for many owners with small devices.However,owing to the private content contained in images,directly outsourcing retrieval work to the cloud provider apparently bring about privacy problem,so the images should be protected carefully before outsourcing.This paper presents a secure retrieval scheme for the encrypted images in the YUV color space.With this scheme,the discrete cosine transform(DCT)is performed on the Y component.The resulting DC coefficients are encrypted with stream cipher technology and the resulting AC coefficients as well as other two color components are encrypted with value permutation and position scrambling.Then the image owner transmits the encrypted images to the cloud server.When receiving a query trapdoor form on query user,the server extracts AC-coefficients histogram from the encrypted Y component and extracts two color histograms from the other two color components.The similarity between query trapdoor and database image is measured by calculating the Manhattan distance of their respective histograms.Finally,the encrypted images closest to the query image are returned to the query user.
文摘A novel content based image retrieval (CBIR) algorithmusing relevant feedback is presented. The proposed frameworkhas three major contributions: a novel feature descriptor calledcolor spectral histogram (CSH) to measure the similarity betweenimages; two-dimensional matrix based indexing approach proposedfor short-term learning (STL); and long-term learning (LTL).In general, image similarities are measured from feature representationwhich includes color quantization, texture, color, shapeand edges. However, CSH can describe the image feature onlywith the histogram. Typically the image retrieval process starts byfinding the similarity between the query image and the imagesin the database; the major computation involved here is that theselection of top ranking images requires a sorting algorithm to beemployed at least with the lower bound of O(n log n). A 2D matrixbased indexing of images can enormously reduce the searchtime in STL. The same structure is used for LTL with an aim toreduce the amount of log to be maintained. The performance ofthe proposed framework is analyzed and compared with the existingapproaches, the quantified results indicates that the proposedfeature descriptor is more effectual than the existing feature descriptorsthat were originally developed for CBIR. In terms of STL,the proposed 2D matrix based indexing minimizes the computationeffort for retrieving similar images and for LTL, the proposed algorithmtakes minimum log information than the existing approaches.
基金Supported by the National Natural Science Foundation of China (No.60372059) Natural Foundation of Anhui Province (No.03042206).
文摘Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the shortcoming of conventional color histogram-based image retrieval methods, an image retrieval method based on Radon Transform (RT) is proposed. In order to reduce the computational complexity, wavelet decomposition is used to compress image data. Firstly, images are decomposed by Mallat algorithm. The low-frequency components are then projected by RT to generate the spatial color feature. Finally the moment feature matrices which are saved along with original images are obtained. Experimental results show that the RT based retrieval is more accurate and efficient than traditional color histogram-based method in case that there are obvious objects in images. Further more, RT based retrieval runs significantly faster than the traditional color histogram methods.
基金The National High Technology Research and Develop-ment Program of China (863 Program) (No.2002AA413420).
文摘In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms.
文摘This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+1 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)。
文摘A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.
基金Project (Nos. 60302012 60202002) supported by the NationaNatural Science Foundation of China and the Research GrantCouncil of the Hong Kong Special Administrative Region (NoPolyU 5119.01E) China
文摘Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).
基金supported by the National Natural Science Foundation of China (No.61170145, 61373081, 61402268, 61401260, 61572298)the Technology and Development Project of Shandong (No.2013GGX10125)+1 种基金the Natural Science Foundation of Shandong China (No.BS2014DX006, ZR2014FM012)the Taishan Scholar Project of Shandong, China
文摘This paper presents an efficient image feature representation method, namely angle structure descriptor(ASD), which is built based on the angle structures of images. According to the diversity in directions, angle structures are defined in local blocks. Combining color information in HSV color space, we use angle structures to detect images. The internal correlations between neighboring pixels in angle structures are explored to form a feature vector. With angle structures as bridges, ASD extracts image features by integrating multiple information as a whole, such as color, texture, shape and spatial layout information. In addition, the proposed algorithm is efficient for image retrieval without any clustering implementation or model training. Experimental results demonstrate that ASD outperforms the other related algorithms.
基金Projects(61370200,61672130,61602082) supported by the National Natural Science Foundation of ChinaProject(1721203049-1) supported by the Science and Technology Research and Development Plan Project of Handan,Hebei Province,China
文摘Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.
基金This research was supported by the National Natural Science Foundation of China(Grant Number:61702310)the National Natural Science Foundation of China(Grant Number:61401260).
文摘The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color Histogram(GCH)and texture features based on Gray Level Co-occurrence Matrix(GLCM).In order to obtain the effective and representative features of the image,we adopt the fuzzy mathematical algorithm in the process of color feature extraction and texture feature extraction respectively.And we combine the fuzzy color feature vector with the fuzzy texture feature vector to form the comprehensive fuzzy feature vector of the image according to a certain way.Image feature matching mainly depends on the similarity between two image feature vectors.In this paper,we propose a novel similarity measure method based on k-Nearest Neighbors(kNN)and fuzzy mathematical algorithm(SBkNNF).Finding out the k nearest neighborhood images of the query image from the image data set according to an appropriate similarity measure method.Using the k similarity values between the query image and its k neighborhood images to constitute the new k-dimensional fuzzy feature vector corresponding to the query image.And using the k similarity values between the retrieved image and the k neighborhood images of the query image to constitute the new k-dimensional fuzzy feature vector corresponding to the retrieved image.Calculating the similarity between the two kdimensional fuzzy feature vector according to a certain fuzzy similarity algorithm to measure the similarity between the query image and the retrieved image.Extensive experiments are carried out on three data sets:WANG data set,Corel-5k data set and Corel-10k data set.The experimental results show that the outperforming retrieval performance of our proposed CBIR system with the other CBIR systems.
基金This work is supported by the National Natural Science Foundation of China(No.61772561)the Key Research&Development Plan of Hunan Province(No.2018NK2012)+2 种基金the Science Research Projects of Hunan Provincial Education Department(Nos.18A174,18C0262)the Science&Technology Innovation Platform and Talent Plan of Hunan Province(2017TP1022)this work is implemented at the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open project(No.20181901CRP04).
文摘With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expected data with privacy-preserving is still a challenging in the encryption image data retrieval.Towards this goal,this paper proposes a ciphertext image retrieval method based on SimHash in cloud computing.Firstly,we extract local feature of images,and then cluster the features by K-means.Based on it,the visual word codebook is introduced to represent feature information of images,which hashes the codebook to the corresponding fingerprint.Finally,the image feature vector is generated by SimHash searchable encryption feature algorithm for similarity retrieval.Extensive experiments on two public datasets validate the effectiveness of our method.Besides,the proposed method outperforms one popular searchable encryption,and the results are competitive to the state-of-the-art.