动能拦截弹(kinetic energy interceptor,KEI)主要用于拦截在助推段、上升段以及中段飞行的中远程和洲际弹道导弹,具有高速、高加速的特点。通过文献资料的研究分析和建模仿真,对KEI导弹的总体参数、气动参数、动力参数进行了反设计和研...动能拦截弹(kinetic energy interceptor,KEI)主要用于拦截在助推段、上升段以及中段飞行的中远程和洲际弹道导弹,具有高速、高加速的特点。通过文献资料的研究分析和建模仿真,对KEI导弹的总体参数、气动参数、动力参数进行了反设计和研究,并对KEI导弹的飞行性能和拦截性能进行了仿真,结果表明:KEI导弹能够在约60 s内加速至6 km/s,并对典型目标具备在助推段/上升段拦截弹道导弹的能力,对国内拦截武器的发展和研究具有参考意义。展开更多
Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQP...Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQPSK) and Gaussian Frequency Shift Keying (GFSK) can be non-coherently demodulated with simple algorithms. However, these types of demodulation are not robust and suffer from poor performance. This paper proposes a new method to enhance the performance of DQPSK and GFSK using Interactive Kalman Filtering (IKF) technique, in which a one Unscented Kalman Filter (UKF) and two Kalman Filters (KF) are coupled to optimize the demodulated signals. This method consists of simple but very effective algorithms without adding complexity to the demodulators comparing to other very complex methods. UKF is used in this method due to its superiority in approximating and estimating nonlinear systems and its ability to handle non-Gaussian noise environments. The proposed method has been validated by creating a MATLAB/SIMULINK Bluetooth system model, in which the IKF is integrated into the receiver, which implement both DQPSK and GFSK, and run simulation in Gaussian and Non-Gaussian noise environments. Results have shown the effectiveness of this method in optimizing the received signals, and that the UKF outperforms the Extended Kalman Filter (EKF).展开更多
The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation ...The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation is achieved, as well as carrier recovery and symbol synchronization.Firstly, MPPSK modulation method is briefly introduced.2PPSK's PSD expression is given with its optimization result.Orthogonal Phase Detector(PD) and static threshold are used for the purpose of wider phase range and simplicity in demodulation.The data rate is alterable, which is 4.65 kbps for 2PPSK and 9.3 kbps for 4PPSK in the paper.Then some indicative comparisons in Signal to Noise Ratio Symbol Error Rate(SNR-SER) are made among 2PPSK, 3PPSK and 4PPSK, of which 4PPSK has proved to be optimal in ten slots each symbol conditions.And finally, it is demonstrated by system simulations that lower than 10-4 Symbol Error Rate(SER) performance can be obtained at 13 dB symbol SNR.展开更多
A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it w...A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it was based on coordinate descent iterations where coordinates were the unknown symbol phases. The PDS algorithm, together with a descent local search (also implemented as a version of the PDS algorithm), was used multiple times with different initializations in a proposed multiple phase detector; the solution with the minimum cost was then chosen as the final solution. The simulation results show that for highly loaded multiuser scenarios, the proposed technique has a detection performance that is close to the single-user bound. The results also show that the multiple phase detector allows detection in highly overloaded scenarios and it exhibits near-far resistance. In particular, the detector has a performance that is significantly better, and complexity that is significantly lower, than that of the detector based on semi-definite relaxation.展开更多
Space shift keying (SSK) is a spectrally efficient and low-complexity technique that only uses antenna index to convey information.Combining SSK with cooperative communication,the transmission reliability of SSK syste...Space shift keying (SSK) is a spectrally efficient and low-complexity technique that only uses antenna index to convey information.Combining SSK with cooperative communication,the transmission reliability of SSK system can be improved effectively.In this paper,considering imperfect channel information,the performance of cooperative SSK system with amplify-and-forward (AF) relaying protocol is investigated,and the effect of estimation error on the performance is analyzed.According to the performance analysis,the probability density function and moment generating function of effective signal-to-noise ratio are derived,respectively.Using these results,the closed-form expression of average bit error rate (BER) can be achieved.Meanwhile,the asymptotically approximated BER and the corresponding diversity order analysis are presented for the performance evaluation.By computer simulations,the validness of the presented theoretical analysis is verified,and the theoretical BERs with different estimation errors are shown to be close to those of the corresponding simulations.展开更多
Phase and amplitude regeneration are necessary for degraded differential phase-shift keying communication sys- tems. This paper proposes a regenerator based on semiconductor optical amplifier for differential phase-sh...Phase and amplitude regeneration are necessary for degraded differential phase-shift keying communication sys- tems. This paper proposes a regenerator based on semiconductor optical amplifier for differential phase-shift keying signals. The key regeneration mechanism is theoretically analysed. The effectiveness of semiconductor optical amplifier based regenerator is demonstrated by comparing the bit error rate and eye diagrams before and after regeneration for 40-Cbit/s differential phase-shift keying 1080-km transmission systems. The results show that regeneration effects are very well. Bit error rate is tess than 10-12 with the regenerator.展开更多
The analysis is based on the error rate and the secure communication rate as functions of distance for three quantum-key-distribution (QKD) protocols: the Bennett-Brassard 1984, the Bennett Brassard Mermin 1992, an...The analysis is based on the error rate and the secure communication rate as functions of distance for three quantum-key-distribution (QKD) protocols: the Bennett-Brassard 1984, the Bennett Brassard Mermin 1992, and the coherent differential-phase-shift keying (DPSK) protocols. We consider the secure communication rate of the DPSK protocol against an arbitrary individual attack, including the most commonly considered intercept-resend and photonnumber splitting attacks, and concluded that the simple and efficient differential-phase-shift-keying protocol allows for more than 200 km of secure communication distance with high communication rates.展开更多
文摘动能拦截弹(kinetic energy interceptor,KEI)主要用于拦截在助推段、上升段以及中段飞行的中远程和洲际弹道导弹,具有高速、高加速的特点。通过文献资料的研究分析和建模仿真,对KEI导弹的总体参数、气动参数、动力参数进行了反设计和研究,并对KEI导弹的飞行性能和拦截性能进行了仿真,结果表明:KEI导弹能够在约60 s内加速至6 km/s,并对典型目标具备在助推段/上升段拦截弹道导弹的能力,对国内拦截武器的发展和研究具有参考意义。
文摘Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQPSK) and Gaussian Frequency Shift Keying (GFSK) can be non-coherently demodulated with simple algorithms. However, these types of demodulation are not robust and suffer from poor performance. This paper proposes a new method to enhance the performance of DQPSK and GFSK using Interactive Kalman Filtering (IKF) technique, in which a one Unscented Kalman Filter (UKF) and two Kalman Filters (KF) are coupled to optimize the demodulated signals. This method consists of simple but very effective algorithms without adding complexity to the demodulators comparing to other very complex methods. UKF is used in this method due to its superiority in approximating and estimating nonlinear systems and its ability to handle non-Gaussian noise environments. The proposed method has been validated by creating a MATLAB/SIMULINK Bluetooth system model, in which the IKF is integrated into the receiver, which implement both DQPSK and GFSK, and run simulation in Gaussian and Non-Gaussian noise environments. Results have shown the effectiveness of this method in optimizing the received signals, and that the UKF outperforms the Extended Kalman Filter (EKF).
基金Supported by National Natural Science Foundation of China (60472054)
文摘The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation is achieved, as well as carrier recovery and symbol synchronization.Firstly, MPPSK modulation method is briefly introduced.2PPSK's PSD expression is given with its optimization result.Orthogonal Phase Detector(PD) and static threshold are used for the purpose of wider phase range and simplicity in demodulation.The data rate is alterable, which is 4.65 kbps for 2PPSK and 9.3 kbps for 4PPSK in the paper.Then some indicative comparisons in Signal to Noise Ratio Symbol Error Rate(SNR-SER) are made among 2PPSK, 3PPSK and 4PPSK, of which 4PPSK has proved to be optimal in ten slots each symbol conditions.And finally, it is demonstrated by system simulations that lower than 10-4 Symbol Error Rate(SER) performance can be obtained at 13 dB symbol SNR.
文摘A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it was based on coordinate descent iterations where coordinates were the unknown symbol phases. The PDS algorithm, together with a descent local search (also implemented as a version of the PDS algorithm), was used multiple times with different initializations in a proposed multiple phase detector; the solution with the minimum cost was then chosen as the final solution. The simulation results show that for highly loaded multiuser scenarios, the proposed technique has a detection performance that is close to the single-user bound. The results also show that the multiple phase detector allows detection in highly overloaded scenarios and it exhibits near-far resistance. In particular, the detector has a performance that is significantly better, and complexity that is significantly lower, than that of the detector based on semi-definite relaxation.
基金supported by the National Natural Science Foundation of China(Nos.61601220,61172077)the Foundation of Graduate Innovation Center in NUAA (No. kfjj20170410)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2017D03)the Six Talent Peaks Project of Jiangsu Province(No.2015-DZXX-007)
文摘Space shift keying (SSK) is a spectrally efficient and low-complexity technique that only uses antenna index to convey information.Combining SSK with cooperative communication,the transmission reliability of SSK system can be improved effectively.In this paper,considering imperfect channel information,the performance of cooperative SSK system with amplify-and-forward (AF) relaying protocol is investigated,and the effect of estimation error on the performance is analyzed.According to the performance analysis,the probability density function and moment generating function of effective signal-to-noise ratio are derived,respectively.Using these results,the closed-form expression of average bit error rate (BER) can be achieved.Meanwhile,the asymptotically approximated BER and the corresponding diversity order analysis are presented for the performance evaluation.By computer simulations,the validness of the presented theoretical analysis is verified,and the theoretical BERs with different estimation errors are shown to be close to those of the corresponding simulations.
基金supported by the Scientific Fund for Chinese Universities (Grant No. BUPT 2009RC0413)the National "863" High Technology Projects (Grant No. 2009AA01Z224)
文摘Phase and amplitude regeneration are necessary for degraded differential phase-shift keying communication sys- tems. This paper proposes a regenerator based on semiconductor optical amplifier for differential phase-shift keying signals. The key regeneration mechanism is theoretically analysed. The effectiveness of semiconductor optical amplifier based regenerator is demonstrated by comparing the bit error rate and eye diagrams before and after regeneration for 40-Cbit/s differential phase-shift keying 1080-km transmission systems. The results show that regeneration effects are very well. Bit error rate is tess than 10-12 with the regenerator.
基金supported by the Natural Science Foundation of Beijing,China (Grant No XK100130837)
文摘The analysis is based on the error rate and the secure communication rate as functions of distance for three quantum-key-distribution (QKD) protocols: the Bennett-Brassard 1984, the Bennett Brassard Mermin 1992, and the coherent differential-phase-shift keying (DPSK) protocols. We consider the secure communication rate of the DPSK protocol against an arbitrary individual attack, including the most commonly considered intercept-resend and photonnumber splitting attacks, and concluded that the simple and efficient differential-phase-shift-keying protocol allows for more than 200 km of secure communication distance with high communication rates.