Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacit...Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance.展开更多
In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for weld...In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.展开更多
During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this m...During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this manuscript deals with the Composite Steel Circular Column(CSCC)with Recycled Aggregate concrete(RAC)as infill is partly used,with the replacement of 25%and 50%in M30 grade of Concrete.And internal reinforcement steel is fully replaced by rolled steel tubes(circular and square)with varied thickness,ISA-unequal angle.Around 14 specimens are cast and examined under axial load for analysis of the deflection characteristics,the load-bearing capacity along with its buckling behavior.The experimental values are estimated through LVDT(linear variable differential transducer)at 3-phase.The curve of load-deflection is drawn with the load pattern.From the date interpretation,it is found column made of 50%-RAC has more than 25%-RAC.展开更多
The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggr...The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance.展开更多
This paper studies the contribution of CFRP(carbon fiber-reinforced polymer)to the mechanical behavior of high strength concrete-filled square steel tube(HCFST)under biaxial eccentric compression.The new type of compo...This paper studies the contribution of CFRP(carbon fiber-reinforced polymer)to the mechanical behavior of high strength concrete-filled square steel tube(HCFST)under biaxial eccentric compression.The new type of composite member is composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes.The finite element analysis was made by ABAQUS on the behavior of high strength concrete filled square steel tubular columns with inner CFRP circular tube subjected to bi-axial eccentric loading.The results obtained from the finite element analysis were verified with the experimental results.In addition,the load-deflection curves in the whole process were calculated and analyzed,which can be divided into three segments:Elastic phase,plastic phase,descending phase.Based on the load-deflection curves,the stresses analysis on the core concrete,CFRP tube and steel tube were conducted.The confinement effect of the CFRP tube improves the ductility of HCFST-CFRP stub column.CFRP ratio and eccentricity affect the ultimate bearing capacity of HCFST stub column.Finally,a calculation formula of ultimate bearing capacity was proposed in the paper.展开更多
In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve...In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.展开更多
A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic ...A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.展开更多
Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular...Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios.展开更多
This paper describes low cyclic loading testing of nine angle-steel concrete column (ASCC) specimens. In the tests, the influence of the shear-span ratio, axial compression ratio and shear steel plate ratio on the h...This paper describes low cyclic loading testing of nine angle-steel concrete column (ASCC) specimens. In the tests, the influence of the shear-span ratio, axial compression ratio and shear steel plate ratio on the hysteretic behavior, energy dissipation, strength degradation, stiffness degradation, skeleton curve and ductility of the ASCCs is studied. Based on the test results, some conclusions are presented. The P-A and sectional M -φ hysteretic models for the ASCCs are presented in a companion paper (Zheng and Ji, 2008).展开更多
Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are pre...Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.展开更多
A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the eff...A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).展开更多
Ten slender steel reinforced cencrete (SRC) composite columns are tested under eccentric loading conditions. Effects of concrete strength, slenderness of columns and eccentricity of the axial load are studied. The l...Ten slender steel reinforced cencrete (SRC) composite columns are tested under eccentric loading conditions. Effects of concrete strength, slenderness of columns and eccentricity of the axial load are studied. The load-carrying capacity is reduced with increased slenderness ratio and eccentricity. Concrete strength has no obvious influence on eccentrically loaded columns. Then, a nonlinear numerical method of pin-ended slender columns is also presented. This method is applicable for determining the material failure load or buckling failure load of a slender steel reinforced concrete composite column. In this method both material and geometric nonlinearities are taken into account. The results of numerical analysis accord well with the test results. The test results are also compared with the results predicted by ACI318-05 and the China Specifications.展开更多
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat...A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.展开更多
In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance ...In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance under axial or eccentric compression. The failure mode is characterized by the crush of the outer concrete. The bearing capacity increases at first and then decreases with further increase of the position coefficient. It can be concluded that position coefficient is an important structural parameter that has considerable influences on the ultimate bearing capacity of the composite columns. The outer concrete, steel tubes and longitudinal reinforcement are found to work in a cooperative manner under axial or eccentric compression when the position coefficient is about 0.5. An improved bearing capacity algorithm that takes the position coefficient into account has been proposed based on the experimental and simulation results and current technical specification in China. It has been proven to be precise and safe.展开更多
An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic later...An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined wit...The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined with fiber-reinforced polymer (FRP) wraps. Totally 11 short column specimens were tested to failure under axial compression. The influences of the type and quantity of FRP, the thickness of steel tube and the concrete strength were studied. It was found that the bearing capacity of short FRP-CFST column was much higher than that of comparable CFST column. Furthermore, the formulas for calculating the bearing capacity of the FRP-CFST columns are proposed. The analytical calculated results agree well with the experimental results.展开更多
Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and us...Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.展开更多
Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular c...Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular columns. The analysis reveals that smaller axial load ratio can improve the shear bearing capacity and ductility while larger axial load ratio will decrease the shear behavior of the through-diaphragm connections. The parametric studies indicate that the axial load ratio should be limited to less than 0.4 and its influence should be considered in the analysis and design of such connections.展开更多
The behaviour of square concrete-filled steel tube columns under concentrical loading was studied. More than one hundred specimens were tested to investigate the effects of thickness of steel tube on the load carrying...The behaviour of square concrete-filled steel tube columns under concentrical loading was studied. More than one hundred specimens were tested to investigate the effects of thickness of steel tube on the load carrying capacity of the concrete-filled tubular columns (CFTs). The effect of the grade of concrete and content of expansive agent were also investigated. The effect of these parameters on the confinement of the concrete core was studied as well. From the experimental study it was found that for both CFTs with different strength grade concrete core, the ultimate load carrying capacity increases with the increase in percentage of expansive agent up to 20% but it again decreases at 25% of expansive agent content. It was also shown that the failure mode of CFTs depends on the strength grade of concrete core.展开更多
基金the financial support from Australian Research Council(ARC)(Grant No.DP220100307).
文摘Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52268048)the Guangxi Key Technology Research and Development Program(Grant No.GUI-KEAB23026101)the Guangxi Science and Technology Major Special Project(Grant No.GUI-KEAA22068066).
文摘In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.
文摘During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this manuscript deals with the Composite Steel Circular Column(CSCC)with Recycled Aggregate concrete(RAC)as infill is partly used,with the replacement of 25%and 50%in M30 grade of Concrete.And internal reinforcement steel is fully replaced by rolled steel tubes(circular and square)with varied thickness,ISA-unequal angle.Around 14 specimens are cast and examined under axial load for analysis of the deflection characteristics,the load-bearing capacity along with its buckling behavior.The experimental values are estimated through LVDT(linear variable differential transducer)at 3-phase.The curve of load-deflection is drawn with the load pattern.From the date interpretation,it is found column made of 50%-RAC has more than 25%-RAC.
基金National Natural Science Foundation of China under Grant No.11472084Science and Technology Project of Guangdong Province under Grant No.2017B020238006+1 种基金Science and Technology Planning Project of Guangzhou City under Grant No.201704030057Fundamental Research Funds for the Central Universities under Grant No.21619327
文摘The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance.
基金This research was funded by Key Projects of National Natural Science Foundation of China(51938009)National Natural Science Foundation of China(51878419)and(51808353).
文摘This paper studies the contribution of CFRP(carbon fiber-reinforced polymer)to the mechanical behavior of high strength concrete-filled square steel tube(HCFST)under biaxial eccentric compression.The new type of composite member is composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes.The finite element analysis was made by ABAQUS on the behavior of high strength concrete filled square steel tubular columns with inner CFRP circular tube subjected to bi-axial eccentric loading.The results obtained from the finite element analysis were verified with the experimental results.In addition,the load-deflection curves in the whole process were calculated and analyzed,which can be divided into three segments:Elastic phase,plastic phase,descending phase.Based on the load-deflection curves,the stresses analysis on the core concrete,CFRP tube and steel tube were conducted.The confinement effect of the CFRP tube improves the ductility of HCFST-CFRP stub column.CFRP ratio and eccentricity affect the ultimate bearing capacity of HCFST stub column.Finally,a calculation formula of ultimate bearing capacity was proposed in the paper.
基金The Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (NoIRT0518)
文摘In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50478027)
文摘A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2020A1515010095and 2023A1515010080)the Science and Technology Program of Guangzhou (Grant No. 202201010126)the Young Science and Technology Talent Support Project of Guangzhou Association for Science and Technology (Grant No. X20210201066)。
文摘Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios.
基金the New Century Excellent Talents in University Under Grant No.290Heilongjiang Key Program on Science and Technology Under Grant No.GC04A609Harbin Key Program on Science and Technology Under Grant No.2004AA9CS187
文摘This paper describes low cyclic loading testing of nine angle-steel concrete column (ASCC) specimens. In the tests, the influence of the shear-span ratio, axial compression ratio and shear steel plate ratio on the hysteretic behavior, energy dissipation, strength degradation, stiffness degradation, skeleton curve and ductility of the ASCCs is studied. Based on the test results, some conclusions are presented. The P-A and sectional M -φ hysteretic models for the ASCCs are presented in a companion paper (Zheng and Ji, 2008).
基金the New Century Excellent Talents in University Under Grant No.290Heilongjiang Key Program on Science and Technology Under Grant No. GC04A609arbin Key Program on Science and Technology Under Grant No. 2004AA9CS187.
文摘Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.
基金the National Natural Science Foundation of China under Grant Nos.51408346 and 51438007the Shanghai Science and Technique Committee under Grant No.14231201300
文摘A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).
基金Project supported by the Natural Science Foundation of Inner Mongolia (Grant No.20020802-0212)
文摘Ten slender steel reinforced cencrete (SRC) composite columns are tested under eccentric loading conditions. Effects of concrete strength, slenderness of columns and eccentricity of the axial load are studied. The load-carrying capacity is reduced with increased slenderness ratio and eccentricity. Concrete strength has no obvious influence on eccentrically loaded columns. Then, a nonlinear numerical method of pin-ended slender columns is also presented. This method is applicable for determining the material failure load or buckling failure load of a slender steel reinforced concrete composite column. In this method both material and geometric nonlinearities are taken into account. The results of numerical analysis accord well with the test results. The test results are also compared with the results predicted by ACI318-05 and the China Specifications.
基金National Natural Science Foundation of China under Grant No.51148009National Natural Science Foundation of China under Grant No.50978005Project High-level Personnel in Beijing under Grant No.PHR20100502
文摘A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
基金Funded by the National Natural Science Foundation of China(Grant No. 51178119)
文摘In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance under axial or eccentric compression. The failure mode is characterized by the crush of the outer concrete. The bearing capacity increases at first and then decreases with further increase of the position coefficient. It can be concluded that position coefficient is an important structural parameter that has considerable influences on the ultimate bearing capacity of the composite columns. The outer concrete, steel tubes and longitudinal reinforcement are found to work in a cooperative manner under axial or eccentric compression when the position coefficient is about 0.5. An improved bearing capacity algorithm that takes the position coefficient into account has been proposed based on the experimental and simulation results and current technical specification in China. It has been proven to be precise and safe.
基金the National Natural Science Foundation of China under Grant Nos.51268004 and 51578163the Guangxi Science and Technology Key Project under Grant No.12118023-3
文摘An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
基金Funded by the National Natural Science Foundation of China (No.50678136)the Hubei Provincial Foundation for Young Outstanding Talents(No. 2004ABB014)
文摘The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined with fiber-reinforced polymer (FRP) wraps. Totally 11 short column specimens were tested to failure under axial compression. The influences of the type and quantity of FRP, the thickness of steel tube and the concrete strength were studied. It was found that the bearing capacity of short FRP-CFST column was much higher than that of comparable CFST column. Furthermore, the formulas for calculating the bearing capacity of the FRP-CFST columns are proposed. The analytical calculated results agree well with the experimental results.
基金Supported by National Natural Science Foundation of China(No.51268054)Natural Science Foundation of Tianjin(No.13JCQNJC07300)the foundation of Key Laboratory of Coast Civil Structure Safety(Tianjin University),Ministry of Education of China(No.2011-1)
文摘Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.
基金Supported by the National Natural Science Foundation of China(No.51268054 and No.51468061)the Natural Science Foundation of Tianjin(No.13JCQNJC07300)Foundation of Xinjiang University(No.XY110137)
文摘Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular columns. The analysis reveals that smaller axial load ratio can improve the shear bearing capacity and ductility while larger axial load ratio will decrease the shear behavior of the through-diaphragm connections. The parametric studies indicate that the axial load ratio should be limited to less than 0.4 and its influence should be considered in the analysis and design of such connections.
基金Funded by the National Natural Science Foundation of China (50978162)the Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education(K201002)
文摘The behaviour of square concrete-filled steel tube columns under concentrical loading was studied. More than one hundred specimens were tested to investigate the effects of thickness of steel tube on the load carrying capacity of the concrete-filled tubular columns (CFTs). The effect of the grade of concrete and content of expansive agent were also investigated. The effect of these parameters on the confinement of the concrete core was studied as well. From the experimental study it was found that for both CFTs with different strength grade concrete core, the ultimate load carrying capacity increases with the increase in percentage of expansive agent up to 20% but it again decreases at 25% of expansive agent content. It was also shown that the failure mode of CFTs depends on the strength grade of concrete core.