Based on single drop mass transfer models and two phase flow equation,a general equationfor calculating the‘true’height of transfer unit of extraction columns was derived and tested withfour types of extraction colu...Based on single drop mass transfer models and two phase flow equation,a general equationfor calculating the‘true’height of transfer unit of extraction columns was derived and tested withfour types of extraction columns with some different working systems.The calculated results fittedwell with those obtained by experiments.展开更多
In this article,numerical simulations are performed to investigate the performance of the thermal diffusion column for the separation of n-heptane/benzene mixture.The present work tried to optimize column by analyzing...In this article,numerical simulations are performed to investigate the performance of the thermal diffusion column for the separation of n-heptane/benzene mixture.The present work tried to optimize column by analyzing significant parameters such as feed flow rate,temperature and cut.In order to obtain the hydrodynamic and temperature and mass distribution inside thermal diffusion column,computational fluid dynamic(CFD) method is applied to solve the Navier-Stocks equations.Numerical simulations are conducted to study the main parameters in both stationary and time-dependent conditions.By using the separation work unit as a function of cut,the optimal cut for maximum SWU occurs within a limited range of 0.47-0.5 for feed rate between 0.5 and 4 g min^-1.Our findings reveal that the optimum feed rate in the range of optimum cut is about 1 g min^-1.In transient study,results show that the best cut for reaching to steady-state condition is θ=0.5.展开更多
基金Supported by the National Natural Science Foundation of China.
文摘Based on single drop mass transfer models and two phase flow equation,a general equationfor calculating the‘true’height of transfer unit of extraction columns was derived and tested withfour types of extraction columns with some different working systems.The calculated results fittedwell with those obtained by experiments.
文摘In this article,numerical simulations are performed to investigate the performance of the thermal diffusion column for the separation of n-heptane/benzene mixture.The present work tried to optimize column by analyzing significant parameters such as feed flow rate,temperature and cut.In order to obtain the hydrodynamic and temperature and mass distribution inside thermal diffusion column,computational fluid dynamic(CFD) method is applied to solve the Navier-Stocks equations.Numerical simulations are conducted to study the main parameters in both stationary and time-dependent conditions.By using the separation work unit as a function of cut,the optimal cut for maximum SWU occurs within a limited range of 0.47-0.5 for feed rate between 0.5 and 4 g min^-1.Our findings reveal that the optimum feed rate in the range of optimum cut is about 1 g min^-1.In transient study,results show that the best cut for reaching to steady-state condition is θ=0.5.