The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the...The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.展开更多
Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s...Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s along the fault strike direction. The source rupture process consists of three sub-events, the first oc- curred near the hypocenter and the rest two ruptured along the up-dip direction and broke the sea bed, causing a maximum slip of about 30 m. The large-scale sea bed breakage may account for the tremendous tsunami disaster which resulted in most of the death and missing in this mega earthquake.展开更多
A novel method,referred to as joint multiple subpulses processing,is developed to calibrate the nonideal transfer function of radio frequency front-end and I/Q imbalance in quadrature modulate/demodulate systems simul...A novel method,referred to as joint multiple subpulses processing,is developed to calibrate the nonideal transfer function of radio frequency front-end and I/Q imbalance in quadrature modulate/demodulate systems simultaneously,which frequently occur in wideband Synthetic Aperture Radar(SAR) systems.Based on the time-frequency relation of the chirp signal and the analyses of the channel errors in wideband SAR,joint multiple subpulses processing method is adopted to separate the image frequency component due to the I/Q channel error.Then,the complete description of the channel error is acquired for building the correction function,which is used to correct the radar raw echo in frequency domain.The validity and capability of this method are demonstrated by the experiments of the channel error correction on the high resolution SAR system with the effective bandwidth of 500 MHz.展开更多
BACKGROUND Lumbar facet joint syndrome(LFJS)is a pain condition arising from lumbar facet joint diseases.Treatments of LFJS includes patient education,oral medication,bed rest,physical therapy,and procedural intervent...BACKGROUND Lumbar facet joint syndrome(LFJS)is a pain condition arising from lumbar facet joint diseases.Treatments of LFJS includes patient education,oral medication,bed rest,physical therapy,and procedural interventions.For some refractory cases that fail conservative therapies,dorsal ramus medial brunch radiofrequency ablation is warranted.However,as nerve fibers can regenerate,their efficacy is impermanent,and the recurrence rate is relatively high.Considering synovial impingement is a paramount pathogenesis of LFJS,in this case,we removed the culprit hyperplastic articular capsule and the articular process partially through a spinal endoscope.As the culprit hyperplastic joint capsule was excised,it is supposed to generate more prolonged efficacy and a lower recurrence rate than radiofrequency treatment.CASE SUMMARY A 40-year-old female patient was diagnosed with LFJS.She complained of low back pain and right buttock pain for half a year.The patient was placed in the prone position.After disinfection and draping,a 25-cm 18-gauge needle was inserted into the dorsal surface of the right L5 articular process.Subsequently,a guidewire,dilating tubes,and a working cannula was inserted successively.The spinal endoscope was positioned in the working cannula.Under the endoscope,the microvascular tissue,muscle tissue attached on the L5 inferior articular process and S1 superior articular process,as well as the capsule and minor portion of the inferior articular process were removed.After the joint space was clear and no bleeding points existed,the endoscope and working cannula were shifted,and the incision was sutured.After treatment,the symptoms were completely relieved.The patient was pain-free during the follow-up period of 6 mo.CONCLUSION The endoscopic partial joint capsule and articular process excision is an effective procedure for LFJS,especially for cases caused by synovial impingement.展开更多
The scope of this project was to investigate the possibility of application of Image Processing Technique in the field of Shaft Alignment process. Misalignment of shaft using image processing software Visionbuilder wa...The scope of this project was to investigate the possibility of application of Image Processing Technique in the field of Shaft Alignment process. Misalignment of shaft using image processing software Visionbuilder was calculated. The further purpose of this project was to check whether the image processing technique can be used in bone transplant surgery. The model of the hip was used for the experimentation purpose. Image processing software Visionbuilder was used to match the profiles of the bone before implant and bone after implant.展开更多
Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardn...Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardness evaluation of the TA15alloy sheets and TA15TIG welded joints were carried out using optical microscope and microhardness tests.The results show that FSSP effectively improves the microstructure and increases the microhardness of the TA15sheets.As for the TIG welded joints,FSSP also effectively improves the microstructure of joints.And the average microhardness value in weld nugget zone is improved significantly,while a small increase of this value in heat affected zone is observed.The hardness in stirring zone is significantly higher than that in the base metal.Two peak values of hardness appear along the width direction in stirring zone.After FSSP,the average hardness of the weld zone of TA15TIG welded joint is significantly higher than that before FSSP.Under the present process parameters,both the surface oxidation in TA15sheets and in TIG welded joints after FSSP are not evident,while the surface forms the bright white layer,which is composed of a great multitude of fine grains.展开更多
We give an extension result of Watanabe’s characterization for 2-dimensional Poisson processes. By using this result, the equivalence of uniqueness in law and joint uniqueness in law is proved for one-dimensional sto...We give an extension result of Watanabe’s characterization for 2-dimensional Poisson processes. By using this result, the equivalence of uniqueness in law and joint uniqueness in law is proved for one-dimensional stochastic differential equations driven by Poisson processes. After that, we give a simplified Engelbert theorem for the stochastic differential equations of this type.展开更多
Fracture of the lateral process of the talus(FLPT)is uncommon in clinical practice and can be easily missed or misdiagnosed.In recent years,as researchers from all over the world have further deepened their research o...Fracture of the lateral process of the talus(FLPT)is uncommon in clinical practice and can be easily missed or misdiagnosed.In recent years,as researchers from all over the world have further deepened their research on FLPT,there has been a breakthrough in the classification,and the methods and principles of clinical management have changed accordingly;however,there is still no standardized guideline for the diagnosis and management of FLPT,and there have been few relevant literature review articles related to this kind of fracture in the past at least 5 years.In this article,we review the clinical classification,classification-based therapeutic recommendations,and prognosis of FLPT,with the aim of providing a reference for the clinical diagnosis and management of this infrequent fracture.展开更多
Joint inversion of teleseismic body-wave data and strong ground motion waveforms was applied to determine the rupture process of the 2010 Mentawai earthquake. To obtain stable solutions, smoothing and non-negative con...Joint inversion of teleseismic body-wave data and strong ground motion waveforms was applied to determine the rupture process of the 2010 Mentawai earthquake. To obtain stable solutions, smoothing and non-negative constraints were introduced. A total of 33 teleseismic stations and 5 strong ground motion stations supplied data. The teleseismic and strong ground motion data were separately windowed for 150 s and 250 s and bandpass filtered with frequencies of 0.001e1.0 Hz and 0.005e0.5 Hz, respectively. The finitefault model was established with length and width of 190 km and 70 km, and the initial seismic source parameters were set by referring to centroid moment tensor(CMT) solutions. Joint inversion results indicate that the focal mechanism of this earthquake is thrust fault type, and the strike, dip, and rake angles are generally in accordance with CMT results. The seismic moment was determined as 5.814 1020Nm(Mw7.8) and source duration was about 102 s, which is greater than those of other earthquakes of similar magnitude. The rupture nucleated near the hypocenter and then propagated along the strike direction to the northwest, with a maximum slip of 3.9 m. Large uncertainties regarding the amount of slip retrieved using different inversion methods still exist; however, the conclusion that the majority of slip occurred far from the islands at very shallow depths was found to be robust. The 2010 Mentawai earthquake was categorized as a tsunami earthquake because of the long rupture duration and the generation of a tsunami much larger than was expected for an earthquake of its magnitude.展开更多
In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the lase...In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the laser shock processed zone of Al-Li alloy was measured, and the microstructure and mechanical properties of the welded joints of the Ni-based superalloy GH30 and the Austenitic stainless steel !Crl8Ni9Ti were compared with those without LSP in this paper. The results showed that the size of strengthened zone was similar to that of laser spot and strengthened layer was about 1mm deep, and the high intense dislocations and twins produced in the shocked zone. Plastic strain also gained surface residual compress stress, which is benefit for the fatigue properties of welded zones. In this test , the surface hardness of welding zone of the superalloy GH30 improved obviously and tensile strength increased by 12%, but the improvement of fatigue life was not obvious; Martensite phase is formed in plasma welding !Crl8Ni9Ti, which reduced the effect of strain deformation martensite induced by laser shock processing, but the surface residual compress stress gained by laser shock processing can obviously improve the fatigue life of !Crl8Ni9Ti welded joints.展开更多
The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion pr...The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion process up to an independent exponential time e_(q)for 0<a<b.The results are expressed in terms of solutions to the differential equations associated with the diffusion generator.Applying these results,we obtain explicit expressions on the Laplace transform of occupation time and joint occupation time for Brownian motion with drift.展开更多
Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few s...Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few scholars have explored the unstable evolution of railway slopes under the joint action of rainfall-vibration.Based on the model test of sandy soil slope,the unstable evolution process of slope under locomotive vibration,rainfall,and rainfall-vibration joint action conditions was simulated in this paper.By comparing and analyzing the variation trends of soil pressure and water content of slope under these conditions,the change laws of pore pressure under the influence of vibration and rainfall were explored.The main control factors affecting the stability of slope structure under the joint action conditions were further defined.Combined with the slope failure phenomena under these three conditions,the causes of slope instability resulting from each leading factor were clarified.Finally,according to the above conclusions,the unstable evolution of the slope under the rainfall-vibration joint action was determined.The test results show that the unstable evolution process of sandy soil slope,under the rainfall-vibration joint action,can be divided into:rainfall erosion cracking,vibration promotion penetrating,and slope instability sliding three stages.In the process of slope unstable evolution,rainfall and vibration play the roles of inducing and promoting slide respectively.In addition,the deep cracks,which are the premise for the formation of the sliding surface,and the violent irregular fluctuation of soil pressure,which reflects the near penetration of the sliding surface,constitute the instability characteristics of the railway slope together.This paper reveals the unstable evolution of sandy soil slopes under the joint action of rainfall-vibration,hoping to provide the theoretical basis for the early warning and prevention technology of railway slopes.展开更多
Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important g...Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important geometrical parameters, joint orientation and joint persistence, was studied systematically by carrying out a series of uniaxial compression tests on gypsum specimens with regularly arranged multiple parallel pre-existing joints. According to crack position, mechanism and temporal sequence, seven types of crack initiations and sixteen types of crack coalescences, were identified. It was observed that both tensile cracks and shear cracks can emanate from the pre-existing joints as well as the matrix. Vertical joints were included and coplanar tensile cracks initiation and coalescence were observed accordingly. For specimen with joint inclination angle ,8=75~, it was found that collinear joints can be linked not only by coplanar shear cracks but also by mixed tensile-shear cracks, and that a pair of them can form a small rotation block. Seven failure modes, including axial cleavage, crushing, crushing and rotation of new blocks, stepped failure, stepped failure and rotation of new blocks, shear failure along a single plane and shear failure along multiple planes, were observed. These modes shift gradually in accordance with the combined variation of joint orientation and joint persistence. It is concluded that cracking process and failure modes are more strongly affected by joint orientation than by joint persistence, especially when joint inclination angle is larger than 45~. Finally, variations of macroscopic mechanical behaviors with the two geometrical parameters, such as patterns of the complete axial stress-axial strain curves, peak strength and elastic modulus, are summarized and their mechanisms are successfully explained according to their different cracking process.展开更多
With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircr...With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.展开更多
Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to ful...Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to fulfill a common mission are challenged by the ever-changing battlefield and hence requires a cross-organizational process management that produces an autonomous, flexible and adaptable architecture for collaborative process evolution. The traditional business process collaboration pattern is based on the predefined "public-view" perspective and cannot meet the requirement of the joint task operations. This paper proposes a flexible visibility control mechanism and a dynamic collaboration framework for modeling and generating collaborative processes. The mechanism allows collaborators to define a set of visibility rules to generate different views of the private processes for different collaborations, which gives a great flexibility for the collaboration initiator to decide on an appropriate collaboration pattern. The framework supports collaborators to dynamically and recursively add a new process or even a new organization to an existing collaboration. Moreover, a formal representation of the processes and a set of generation algorithms are provided to consolidate the proposed theory.展开更多
Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints...Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints which have 25 different combinations of process parameters were designed. The numerical models of all the 25 CBGA solder joints were developed using the Sugrace Evolver. Utilizing the sugrace coordinate exported from the 25 CBGA solder joints numerical models, the finite element analysis models were set up and the nonlinear finite element analysis of the CBGA solder joints under thermal cycles were pegrormed by ANSYS. The thermal fatigue life of CBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results, the range analysis and the variance analysis were pegrormed. The results show that the fatigue life of CBGA solder joint is affected by the pad diameter, the stencil thickness, the ball diameter and the stand-off in a descending order, the best combination of process parameters results in the longest fatigue life is 0.07 mm stand-off, 0.125 mm stencil thickness of, 0.85 mm ball diameter and 0. 89 mm pad diameter. With 95% confidence the pad diameter has a significant effect on the reliability of CBGA solder joints whereas the stand-off, the stencil thickness and the ball diameter have little effect on the reliability of CBGA solder joints.展开更多
Corrosion behavior of friction stir lap welded AA6061-T6 aluminum alloy was investigated by immersion tests in sodium chloride + hydrogen peroxide solution. Electrochemical measurement by cyclic potentiodynamic polari...Corrosion behavior of friction stir lap welded AA6061-T6 aluminum alloy was investigated by immersion tests in sodium chloride + hydrogen peroxide solution. Electrochemical measurement by cyclic potentiodynamic polarization, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize corrosion morphology and to realize corrosion mechanism of weld regions as opposed to the parent alloy. The microstructure and shear strength of welded joint were fully investigated. The results indicate that, compared with the parent alloy, the weld regions are susceptible to intergranular and pitting attacks in the test solution during immersion time. The obtained results of lap shear testing disclose that tensile shear strength of the welds is 128 MPa which is more than 60% of the strength of parent alloy in lap shear testing. Electrochemical results show that the protection potentials of the WNZ and HAZ regions are more negative than the pitting potential. This means that the WNZ and HAZ regions do not show more tendencies to pitting corrosion. Corrosion resistance of parent alloy is higher than that for the weldments, and the lowest corrosion resistance is related to the heat affected zone. The pitting attacks originate from the edge of intermetallic particles as the cathode compared with the Al matrix due to their high self-corrosion potential. It is supposed that by increasing intermetallic particle distributed throughout the matrix of weld regions, the galvanic corrosion couples are increased, and hence decrease the corrosion resistance of weld regions.展开更多
For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the b...For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the bondedparticle model. The microscopic parameters which can reflect the macroscopic mechanical properties and failure behavior of artificial jointed specimens are firstly calibrated. Then, the influence of joint inclination and confining pressure on stress-strain curves, crack patterns, and contact force distributions of jointed rock are investigated. The simulation results show that both the compressive strength and elastic modulus of the specimens increase with increasing confining pressure, and these two mechanical parameters decrease first and then increase with the increase of joints inclination. The sensitivity of strength and elastic modulus to confining pressure is not the same in different joints inclinations, which has the least impact on specimens with α=90°. Under low confining pressure, the failure modes are controlled by the joint inclination. As the confining pressure increased, the initiation and propagation of tensile crack are gradually inhibited, and the failure mode is transferred from tensile failure to shear-compression failure. Finally, the reinforcement effect of prestressed bolt support on engineering fractured rock mass is discussed.展开更多
For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven thre...For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.展开更多
The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_...The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_(S)>7.0 have occurred in the past 25 years.Here,we combined interferometric synthetic aperture radar,GPS,and teleseismic data to study the coseismic slip distribution,fault geometry,and dynamic source rupture process of the Maduo earthquake.We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°.There was slight bending at the western end and two branches at the eastern end.The maximum slip is located near the eastern bending area on the northern branch of the fault system.The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions.The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 M_(W)6.8 Yushu earthquake,indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block.展开更多
文摘The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.
基金financially supported by the National Natural Science Foundation of China (Nos. 90915012 and 41090291)the Research Project in Earthquake Science, CEA (No.201108002)
文摘Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s along the fault strike direction. The source rupture process consists of three sub-events, the first oc- curred near the hypocenter and the rest two ruptured along the up-dip direction and broke the sea bed, causing a maximum slip of about 30 m. The large-scale sea bed breakage may account for the tremendous tsunami disaster which resulted in most of the death and missing in this mega earthquake.
基金Supported by the National High-Tech Research and Development Plan of China(No.2007AA120302)
文摘A novel method,referred to as joint multiple subpulses processing,is developed to calibrate the nonideal transfer function of radio frequency front-end and I/Q imbalance in quadrature modulate/demodulate systems simultaneously,which frequently occur in wideband Synthetic Aperture Radar(SAR) systems.Based on the time-frequency relation of the chirp signal and the analyses of the channel errors in wideband SAR,joint multiple subpulses processing method is adopted to separate the image frequency component due to the I/Q channel error.Then,the complete description of the channel error is acquired for building the correction function,which is used to correct the radar raw echo in frequency domain.The validity and capability of this method are demonstrated by the experiments of the channel error correction on the high resolution SAR system with the effective bandwidth of 500 MHz.
文摘BACKGROUND Lumbar facet joint syndrome(LFJS)is a pain condition arising from lumbar facet joint diseases.Treatments of LFJS includes patient education,oral medication,bed rest,physical therapy,and procedural interventions.For some refractory cases that fail conservative therapies,dorsal ramus medial brunch radiofrequency ablation is warranted.However,as nerve fibers can regenerate,their efficacy is impermanent,and the recurrence rate is relatively high.Considering synovial impingement is a paramount pathogenesis of LFJS,in this case,we removed the culprit hyperplastic articular capsule and the articular process partially through a spinal endoscope.As the culprit hyperplastic joint capsule was excised,it is supposed to generate more prolonged efficacy and a lower recurrence rate than radiofrequency treatment.CASE SUMMARY A 40-year-old female patient was diagnosed with LFJS.She complained of low back pain and right buttock pain for half a year.The patient was placed in the prone position.After disinfection and draping,a 25-cm 18-gauge needle was inserted into the dorsal surface of the right L5 articular process.Subsequently,a guidewire,dilating tubes,and a working cannula was inserted successively.The spinal endoscope was positioned in the working cannula.Under the endoscope,the microvascular tissue,muscle tissue attached on the L5 inferior articular process and S1 superior articular process,as well as the capsule and minor portion of the inferior articular process were removed.After the joint space was clear and no bleeding points existed,the endoscope and working cannula were shifted,and the incision was sutured.After treatment,the symptoms were completely relieved.The patient was pain-free during the follow-up period of 6 mo.CONCLUSION The endoscopic partial joint capsule and articular process excision is an effective procedure for LFJS,especially for cases caused by synovial impingement.
文摘The scope of this project was to investigate the possibility of application of Image Processing Technique in the field of Shaft Alignment process. Misalignment of shaft using image processing software Visionbuilder was calculated. The further purpose of this project was to check whether the image processing technique can be used in bone transplant surgery. The model of the hip was used for the experimentation purpose. Image processing software Visionbuilder was used to match the profiles of the bone before implant and bone after implant.
基金Project(51405389) supported by the National Natural Science Foundation of ChinaProject(3102015ZY024) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2014003) supported by the Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,China
文摘Effects of friction stir spot processing(FSSP)on the microstructures and microhardness of tungsten inert gas(TIG)welded TA15titanium alloy joints were investigated.The macro/micro structural observation and microhardness evaluation of the TA15alloy sheets and TA15TIG welded joints were carried out using optical microscope and microhardness tests.The results show that FSSP effectively improves the microstructure and increases the microhardness of the TA15sheets.As for the TIG welded joints,FSSP also effectively improves the microstructure of joints.And the average microhardness value in weld nugget zone is improved significantly,while a small increase of this value in heat affected zone is observed.The hardness in stirring zone is significantly higher than that in the base metal.Two peak values of hardness appear along the width direction in stirring zone.After FSSP,the average hardness of the weld zone of TA15TIG welded joint is significantly higher than that before FSSP.Under the present process parameters,both the surface oxidation in TA15sheets and in TIG welded joints after FSSP are not evident,while the surface forms the bright white layer,which is composed of a great multitude of fine grains.
文摘We give an extension result of Watanabe’s characterization for 2-dimensional Poisson processes. By using this result, the equivalence of uniqueness in law and joint uniqueness in law is proved for one-dimensional stochastic differential equations driven by Poisson processes. After that, we give a simplified Engelbert theorem for the stochastic differential equations of this type.
基金Supported by The China Scholarship Council,No.202308420035.
文摘Fracture of the lateral process of the talus(FLPT)is uncommon in clinical practice and can be easily missed or misdiagnosed.In recent years,as researchers from all over the world have further deepened their research on FLPT,there has been a breakthrough in the classification,and the methods and principles of clinical management have changed accordingly;however,there is still no standardized guideline for the diagnosis and management of FLPT,and there have been few relevant literature review articles related to this kind of fracture in the past at least 5 years.In this article,we review the clinical classification,classification-based therapeutic recommendations,and prognosis of FLPT,with the aim of providing a reference for the clinical diagnosis and management of this infrequent fracture.
基金supported by National Natural Science Foundation of China (41304046)
文摘Joint inversion of teleseismic body-wave data and strong ground motion waveforms was applied to determine the rupture process of the 2010 Mentawai earthquake. To obtain stable solutions, smoothing and non-negative constraints were introduced. A total of 33 teleseismic stations and 5 strong ground motion stations supplied data. The teleseismic and strong ground motion data were separately windowed for 150 s and 250 s and bandpass filtered with frequencies of 0.001e1.0 Hz and 0.005e0.5 Hz, respectively. The finitefault model was established with length and width of 190 km and 70 km, and the initial seismic source parameters were set by referring to centroid moment tensor(CMT) solutions. Joint inversion results indicate that the focal mechanism of this earthquake is thrust fault type, and the strike, dip, and rake angles are generally in accordance with CMT results. The seismic moment was determined as 5.814 1020Nm(Mw7.8) and source duration was about 102 s, which is greater than those of other earthquakes of similar magnitude. The rupture nucleated near the hypocenter and then propagated along the strike direction to the northwest, with a maximum slip of 3.9 m. Large uncertainties regarding the amount of slip retrieved using different inversion methods still exist; however, the conclusion that the majority of slip occurred far from the islands at very shallow depths was found to be robust. The 2010 Mentawai earthquake was categorized as a tsunami earthquake because of the long rupture duration and the generation of a tsunami much larger than was expected for an earthquake of its magnitude.
文摘In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the laser shock processed zone of Al-Li alloy was measured, and the microstructure and mechanical properties of the welded joints of the Ni-based superalloy GH30 and the Austenitic stainless steel !Crl8Ni9Ti were compared with those without LSP in this paper. The results showed that the size of strengthened zone was similar to that of laser spot and strengthened layer was about 1mm deep, and the high intense dislocations and twins produced in the shocked zone. Plastic strain also gained surface residual compress stress, which is benefit for the fatigue properties of welded zones. In this test , the surface hardness of welding zone of the superalloy GH30 improved obviously and tensile strength increased by 12%, but the improvement of fatigue life was not obvious; Martensite phase is formed in plasma welding !Crl8Ni9Ti, which reduced the effect of strain deformation martensite induced by laser shock processing, but the surface residual compress stress gained by laser shock processing can obviously improve the fatigue life of !Crl8Ni9Ti welded joints.
基金Supported by the National Natural Science Foundation of China(12271062,11731012)by the Hunan Provincial National Natural Science Foundation of China(2019JJ50405)。
文摘The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion process up to an independent exponential time e_(q)for 0<a<b.The results are expressed in terms of solutions to the differential equations associated with the diffusion generator.Applying these results,we obtain explicit expressions on the Laplace transform of occupation time and joint occupation time for Brownian motion with drift.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.42027806)the Key Programme of the Natural Science Foundation of China(Grant No.41630639)National Natural Science Foundation of China General Program(Grant No.42372324).
文摘Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few scholars have explored the unstable evolution of railway slopes under the joint action of rainfall-vibration.Based on the model test of sandy soil slope,the unstable evolution process of slope under locomotive vibration,rainfall,and rainfall-vibration joint action conditions was simulated in this paper.By comparing and analyzing the variation trends of soil pressure and water content of slope under these conditions,the change laws of pore pressure under the influence of vibration and rainfall were explored.The main control factors affecting the stability of slope structure under the joint action conditions were further defined.Combined with the slope failure phenomena under these three conditions,the causes of slope instability resulting from each leading factor were clarified.Finally,according to the above conclusions,the unstable evolution of the slope under the rainfall-vibration joint action was determined.The test results show that the unstable evolution process of sandy soil slope,under the rainfall-vibration joint action,can be divided into:rainfall erosion cracking,vibration promotion penetrating,and slope instability sliding three stages.In the process of slope unstable evolution,rainfall and vibration play the roles of inducing and promoting slide respectively.In addition,the deep cracks,which are the premise for the formation of the sliding surface,and the violent irregular fluctuation of soil pressure,which reflects the near penetration of the sliding surface,constitute the instability characteristics of the railway slope together.This paper reveals the unstable evolution of sandy soil slopes under the joint action of rainfall-vibration,hoping to provide the theoretical basis for the early warning and prevention technology of railway slopes.
基金Project(11102224)supported by the National Natural Science Foundation of ChinaProject(2009QL05)supported by the Fundamental Research Funds for the Central Universities of China
文摘Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important geometrical parameters, joint orientation and joint persistence, was studied systematically by carrying out a series of uniaxial compression tests on gypsum specimens with regularly arranged multiple parallel pre-existing joints. According to crack position, mechanism and temporal sequence, seven types of crack initiations and sixteen types of crack coalescences, were identified. It was observed that both tensile cracks and shear cracks can emanate from the pre-existing joints as well as the matrix. Vertical joints were included and coplanar tensile cracks initiation and coalescence were observed accordingly. For specimen with joint inclination angle ,8=75~, it was found that collinear joints can be linked not only by coplanar shear cracks but also by mixed tensile-shear cracks, and that a pair of them can form a small rotation block. Seven failure modes, including axial cleavage, crushing, crushing and rotation of new blocks, stepped failure, stepped failure and rotation of new blocks, shear failure along a single plane and shear failure along multiple planes, were observed. These modes shift gradually in accordance with the combined variation of joint orientation and joint persistence. It is concluded that cracking process and failure modes are more strongly affected by joint orientation than by joint persistence, especially when joint inclination angle is larger than 45~. Finally, variations of macroscopic mechanical behaviors with the two geometrical parameters, such as patterns of the complete axial stress-axial strain curves, peak strength and elastic modulus, are summarized and their mechanisms are successfully explained according to their different cracking process.
基金supported by the Fundamental Research Funds for the Central Universities(NS2015072)
文摘With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.
基金supported by the National Natural Science Foundation of China(61273210)the National High Technology Research and Development Program of China(863 Program)(2007AA01Z126)
文摘Interoperability plays an important role in the joint command, control, communication, computer, intelligence, surveillance, reconnaissance(C4 ISR) operations. Coordinating and integrating operational processes to fulfill a common mission are challenged by the ever-changing battlefield and hence requires a cross-organizational process management that produces an autonomous, flexible and adaptable architecture for collaborative process evolution. The traditional business process collaboration pattern is based on the predefined "public-view" perspective and cannot meet the requirement of the joint task operations. This paper proposes a flexible visibility control mechanism and a dynamic collaboration framework for modeling and generating collaborative processes. The mechanism allows collaborators to define a set of visibility rules to generate different views of the private processes for different collaborations, which gives a great flexibility for the collaboration initiator to decide on an appropriate collaboration pattern. The framework supports collaborators to dynamically and recursively add a new process or even a new organization to an existing collaboration. Moreover, a formal representation of the processes and a set of generation algorithms are provided to consolidate the proposed theory.
基金This work was supported by Science Foundation of Guangxi Zhuang Autonomous Region (Contract No. 02336060).
文摘Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints which have 25 different combinations of process parameters were designed. The numerical models of all the 25 CBGA solder joints were developed using the Sugrace Evolver. Utilizing the sugrace coordinate exported from the 25 CBGA solder joints numerical models, the finite element analysis models were set up and the nonlinear finite element analysis of the CBGA solder joints under thermal cycles were pegrormed by ANSYS. The thermal fatigue life of CBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results, the range analysis and the variance analysis were pegrormed. The results show that the fatigue life of CBGA solder joint is affected by the pad diameter, the stencil thickness, the ball diameter and the stand-off in a descending order, the best combination of process parameters results in the longest fatigue life is 0.07 mm stand-off, 0.125 mm stencil thickness of, 0.85 mm ball diameter and 0. 89 mm pad diameter. With 95% confidence the pad diameter has a significant effect on the reliability of CBGA solder joints whereas the stand-off, the stencil thickness and the ball diameter have little effect on the reliability of CBGA solder joints.
文摘Corrosion behavior of friction stir lap welded AA6061-T6 aluminum alloy was investigated by immersion tests in sodium chloride + hydrogen peroxide solution. Electrochemical measurement by cyclic potentiodynamic polarization, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize corrosion morphology and to realize corrosion mechanism of weld regions as opposed to the parent alloy. The microstructure and shear strength of welded joint were fully investigated. The results indicate that, compared with the parent alloy, the weld regions are susceptible to intergranular and pitting attacks in the test solution during immersion time. The obtained results of lap shear testing disclose that tensile shear strength of the welds is 128 MPa which is more than 60% of the strength of parent alloy in lap shear testing. Electrochemical results show that the protection potentials of the WNZ and HAZ regions are more negative than the pitting potential. This means that the WNZ and HAZ regions do not show more tendencies to pitting corrosion. Corrosion resistance of parent alloy is higher than that for the weldments, and the lowest corrosion resistance is related to the heat affected zone. The pitting attacks originate from the edge of intermetallic particles as the cathode compared with the Al matrix due to their high self-corrosion potential. It is supposed that by increasing intermetallic particle distributed throughout the matrix of weld regions, the galvanic corrosion couples are increased, and hence decrease the corrosion resistance of weld regions.
基金Projects(52004145,51904164)supported by the National Natural Science Foundation of ChinaProject(ZR2020QE119)supported by the Natural Science Foundation of Shandong Province,ChinaProject(SICGM202107)supported by the Open Fund of the Key Laboratory of Mining Disaster Prevention and Control,China。
文摘For a deeper understanding of the deformation failure behavior of jointed rock, numerical compression simulations are carried out on a rock specimen containing non-persistent joints under confining pressure with the bondedparticle model. The microscopic parameters which can reflect the macroscopic mechanical properties and failure behavior of artificial jointed specimens are firstly calibrated. Then, the influence of joint inclination and confining pressure on stress-strain curves, crack patterns, and contact force distributions of jointed rock are investigated. The simulation results show that both the compressive strength and elastic modulus of the specimens increase with increasing confining pressure, and these two mechanical parameters decrease first and then increase with the increase of joints inclination. The sensitivity of strength and elastic modulus to confining pressure is not the same in different joints inclinations, which has the least impact on specimens with α=90°. Under low confining pressure, the failure modes are controlled by the joint inclination. As the confining pressure increased, the initiation and propagation of tensile crack are gradually inhibited, and the failure mode is transferred from tensile failure to shear-compression failure. Finally, the reinforcement effect of prestressed bolt support on engineering fractured rock mass is discussed.
基金The National Natural Science Foundation of China(No.41572276)the National Key Research and Development Program of China(No.2017YFC0805400).
文摘For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.
基金supported by grants of the K.C.Wong Education Foundation(No.GJTD-2019-04)Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK07)National Nature Science Foundation of China(No.41988101-0104)。
文摘The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_(S)>7.0 have occurred in the past 25 years.Here,we combined interferometric synthetic aperture radar,GPS,and teleseismic data to study the coseismic slip distribution,fault geometry,and dynamic source rupture process of the Maduo earthquake.We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°.There was slight bending at the western end and two branches at the eastern end.The maximum slip is located near the eastern bending area on the northern branch of the fault system.The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions.The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 M_(W)6.8 Yushu earthquake,indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block.