The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C ...The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.展开更多
Novel bent shape tenary facial amphiphilic imidazolium ILC which consist of a ^-conjugated bent aromatic cores (2,5-dithiophenylethynyl phenyl bent core), two terminal poliphilic alkyl chains and lateral n-alky chai...Novel bent shape tenary facial amphiphilic imidazolium ILC which consist of a ^-conjugated bent aromatic cores (2,5-dithiophenylethynyl phenyl bent core), two terminal poliphilic alkyl chains and lateral n-alky chain terminated by an imidazolium bromide unit were synthesized by using Kumada and Sonogashira coupling reactions as key steps and both their thermotropic and lyotropic mesophase behaviors were studied by POM, DSC and XRD. Columnar phases were found in these compounds, a hexagonal cylinder model with core shell structure is supposed for the columnar phase formed by compound 1/8. Our study may provide a new strategy for designing new LC functional material.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51574027 and 51604206)the Financial Support from the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-22)
文摘The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.
基金the National Natural Science Foundation of China,the Yunnan Science Foundation
文摘Novel bent shape tenary facial amphiphilic imidazolium ILC which consist of a ^-conjugated bent aromatic cores (2,5-dithiophenylethynyl phenyl bent core), two terminal poliphilic alkyl chains and lateral n-alky chain terminated by an imidazolium bromide unit were synthesized by using Kumada and Sonogashira coupling reactions as key steps and both their thermotropic and lyotropic mesophase behaviors were studied by POM, DSC and XRD. Columnar phases were found in these compounds, a hexagonal cylinder model with core shell structure is supposed for the columnar phase formed by compound 1/8. Our study may provide a new strategy for designing new LC functional material.