Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules ...Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules are exhausted on the other side.The penetration depth of radicals depends on numerous parameters,so it is not always feasible to calculate it.This article presents systematic measurements of the penetration depth of oxygen atoms along tubes made from nickel,cobalt,and copper.The source of O atoms was a surfatron-type microwave plasma.The initial density of O atoms depended on the gas flow and was 0.7×10^(21)m^(-3),2.4×10^(21)m^(-3),and 4.2×10^(21)m^(-3)at the flow rates of 50,300,and 600 sccm,and pressures of 10,35,and 60 Pa,respectively.The gas temperature remained at room temperature throughout the experiments.The dissociation fraction decreased exponentially along the length of the tubes in all cases.The penetration depths for well-oxidized nickel were 1.2,1.7,and 2.4 cm,respectively.For cobalt,they were slightly lower at 1.0,1.3,and 1.6 cm,respectively,while for copper,they were 1.1,1.3,and 1.7 cm,respectively.The results were explained by gas dynamics and heterogeneous surface association.These data are useful in any attempt to estimate the loss of molecular fragments along tubes,which serve as catalysts for the association of various radicals to stable molecules.展开更多
Multiple analytical methods and Monte Carlo simulations were performed to evaluate neutron penetration in straight and curved labyrinths. Factors studied included variations in beam losses of off-axis point source,on-...Multiple analytical methods and Monte Carlo simulations were performed to evaluate neutron penetration in straight and curved labyrinths. Factors studied included variations in beam losses of off-axis point source,on-axis point source,and line source. For the straight labyrinth, it was found that the analytical expressions neglect the dose rate platform appearing at the bend of the labyrinth, and the agreement between analytical methods and Monte Carlo estimation was related to the type of neutron source term. For the curved labyrinth, the neutron attenuation length obtained under different conditions was nearly identical and appeared to be in quite good accord with the empirical formula calculation. Moreover, the neutron energy spectra along the centerline distance of the labyrinth were also analyzed. In the first leg, differences in beam loss led to variance in the distribution of spectra,while in the second and subsequent legs, the spectra were similar, where the main contributors were thermal neutrons. This work is valuable for practical design of the labyrinths in the accelerator facilities.展开更多
The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator,obviously reducing the pe...The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator,obviously reducing the penetration efficiency of penetrator.Provided that the work of friction between projectile and target is totally transformed into the heat to melt penetrator material at its nose surface,an engineering model is established for the mass loss and nose-blunting of the ogive-nosed projectile.A dimensionless formula for the relative mass loss of projectile is obtained by introducing the dimensionless impact function I and geometry function N of the projectile.The critical value V c0of the initial striking velocity is formulated,and the mass loss of projectile tends to increase weakly nonlinearly with I/N when V0〉V c0,whilst the mass loss is proportional to the initial kinetic energy of projectile when V0展开更多
Earth penetration weapon (EPW) is applicable for attacking underground targets protected by reinforced concrete and rocks. With increasing impact velocity, the mass loss/abrasion of penetrator increases, which signi...Earth penetration weapon (EPW) is applicable for attacking underground targets protected by reinforced concrete and rocks. With increasing impact velocity, the mass loss/abrasion of penetrator increases, which significandy decreases the penetration efficiency due to the change of nose shape. The abrasion may induce instability of the penetrator, and lead to failure of its structure. A common disadvantage, i.e. dependence on corresponding experimen- tal results, exists in all the available formulae, which limits their ranges of application in estimating the mass loss of penetrator. In this paper, we conduct a parametric study on the mass loss of penetrator, and indicate that the mass loss of penetrator can be determined by seven variables, i.e., the initial impact velocity, initial nose shape, melting heat, shank diameter of projectile and density and strength of target as well as the aggregate hardness of target. Further discussion on factors dominant in the mass abrasion of penetrator are given, which may be helpful for optimizing the target or the projectile for defensive or offensive objectives, respectively.展开更多
Objective: This work compares the occlusive effect and the penetration enhancement ability of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), through in vitro skin. Methods: SLN and NLC were p...Objective: This work compares the occlusive effect and the penetration enhancement ability of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), through in vitro skin. Methods: SLN and NLC were prepared by high shear homogenization and characterized by size, polydispersity index, zeta potential, morphology and physical stability. Occlusive effect was assessed by an in vitro test and by measuring TEWL using pig skin. Skin treated with the lipid carriers was visualized by SEM. A penetration test through skin, followed by tape stripping, was carried out using Nile red as a marker. Results: SLN (200 ± 6 nm) and NLC (192 ± 11 nm) were obtained. An occlusion factor of 36% - 39% was observed for both systems, while a reduction in TEWL of 34.3% ± 14.8% and 26.2% ± 6.5% was seen after treatment with SLN and NLC, respectively. SEM images showed a film formed by the lipid carriers, responsible for the occlusion observed. No differences were found between the occlusive effect produced by SLN and NLC in both tests. NLC allowed the penetration of a greater amount of Nile red than SLN: 4.7 ± 1.3 μg and 1.7 ± 0.4 μg, respectively. Conclusion: Both carriers form a film on the skin, providing an occlusive effect with no differences between these two systems. The penetration of a marker (Nile red) into the stratum corneum was quite higher for NLC than for SLN, suggesting an influence of the composition of these particles on their penetration enhancing ability.展开更多
The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride so...The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride solutions of specific concentrations with different test ages.Hardened properties of the mixes were assessed in terms of weight loss and compressive strength.X-ray diffraction(XRD)and scanning electron microscopy(SEM)of mixes were performed to analysis the phase evolution and microstructure.The results demonstrated that the introduction of nano-SiO_(2) emulsion significantly decreased the compressive strength loss and calcium hydroxide(CH)crystal content of hydration production,and then enhanced the resistance of cement-based grouting materials to chloride ion penetration.This improvement derives from the filling and pozzolanic effects of nano-SiO_(2) particles,which were incorporated via an emulsion and attributed to a well dispersion in grouting matrix.展开更多
目的研究中药挥发油透皮促渗苷类成分效果与对经皮水分散失量(Transepidermal water loss,TEWL)的相关性。方法采用HPLC法测定3种苷类成分(栀子苷、龙胆苦苷、芍药苷)的含量及油水分配系数,采用改良Franz扩散池法以离体SD大鼠腹部皮肤...目的研究中药挥发油透皮促渗苷类成分效果与对经皮水分散失量(Transepidermal water loss,TEWL)的相关性。方法采用HPLC法测定3种苷类成分(栀子苷、龙胆苦苷、芍药苷)的含量及油水分配系数,采用改良Franz扩散池法以离体SD大鼠腹部皮肤为透皮吸收屏障进行体外透皮实验,考察高良姜、干姜、薄荷、胡椒和吴茱萸5种中药挥发油对3种苷类成分的体外透皮促渗效果,采用经皮水分散失量评价5种中药挥发油对大鼠皮肤屏障功能的影响,通过相关性分析考察中药挥发油透皮促渗苷类成分效果与其对皮肤屏障功能影响之间的相关性。结果高良姜油、干姜油、薄荷油、胡椒油能促进3种苷类成分的透皮吸收,也能显著降低大鼠的皮肤屏障功能,相关性分析结果表明中药挥发油对苷类成分的透皮促渗效果与其对皮肤经皮水分散失量的影响显著相关。结论TEWL为中药挥发油透皮促渗剂的快速筛选提供了一种简便快捷的在体评价方法。展开更多
The high-speed penetration of concrete targets by kinetic energy projectiles results in apparent mass loss,which blunts the nose of the projectile and decrease its penetration performance.The friction work between the...The high-speed penetration of concrete targets by kinetic energy projectiles results in apparent mass loss,which blunts the nose of the projectile and decrease its penetration performance.The friction work between the projectile and the concrete target,the plastic deformation of the projectile,and the cutting of aggregates to the projectile significantly affect the mass loss of the projectile.To address these effects,a discrete iterative model is developed for the mass loss and nose shape evolution of the projectile by coupling three mechanisms based on the effect of temperature on strength.In the model,both friction work and plastic work increase the temperature of the projectile's surface layer,thereby weakening the strength of this part and rendering it easier for mass loss to occur due to aggregate cutting.The model discretizes the projectile and penetration process with respect to the space and time dimensions,respectively.The mass loss and nose shape evolution of the projectile are obtained by iteratively calculating a point-by-point regression.The predicted depth of penetration(DOP),mass loss,and residual projectile profile are compared with experimental data to validate the model.The comparison shows satisfactory agreement between the calculated results and experimental data.Additionally,the deceleration,velocity,DOP,and mass loss during penetration are analyzed with respect to time.Finally,based on the model,the effects of projectile strength,caliber-radius-head(CRH),and concrete target strength on penetration are discussed.展开更多
基金funded by the Slovenian Research Agency,Core Funding(No.P2-0082)and Project(No.L24487)。
文摘Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules are exhausted on the other side.The penetration depth of radicals depends on numerous parameters,so it is not always feasible to calculate it.This article presents systematic measurements of the penetration depth of oxygen atoms along tubes made from nickel,cobalt,and copper.The source of O atoms was a surfatron-type microwave plasma.The initial density of O atoms depended on the gas flow and was 0.7×10^(21)m^(-3),2.4×10^(21)m^(-3),and 4.2×10^(21)m^(-3)at the flow rates of 50,300,and 600 sccm,and pressures of 10,35,and 60 Pa,respectively.The gas temperature remained at room temperature throughout the experiments.The dissociation fraction decreased exponentially along the length of the tubes in all cases.The penetration depths for well-oxidized nickel were 1.2,1.7,and 2.4 cm,respectively.For cobalt,they were slightly lower at 1.0,1.3,and 1.6 cm,respectively,while for copper,they were 1.1,1.3,and 1.7 cm,respectively.The results were explained by gas dynamics and heterogeneous surface association.These data are useful in any attempt to estimate the loss of molecular fragments along tubes,which serve as catalysts for the association of various radicals to stable molecules.
基金supported by the National Key R&D Program of China(No.2017YFC0107700)
文摘Multiple analytical methods and Monte Carlo simulations were performed to evaluate neutron penetration in straight and curved labyrinths. Factors studied included variations in beam losses of off-axis point source,on-axis point source,and line source. For the straight labyrinth, it was found that the analytical expressions neglect the dose rate platform appearing at the bend of the labyrinth, and the agreement between analytical methods and Monte Carlo estimation was related to the type of neutron source term. For the curved labyrinth, the neutron attenuation length obtained under different conditions was nearly identical and appeared to be in quite good accord with the empirical formula calculation. Moreover, the neutron energy spectra along the centerline distance of the labyrinth were also analyzed. In the first leg, differences in beam loss led to variance in the distribution of spectra,while in the second and subsequent legs, the spectra were similar, where the main contributors were thermal neutrons. This work is valuable for practical design of the labyrinths in the accelerator facilities.
基金supported by the National Outstanding Young Scientists Foundation of China(11225213)the Funds for Creative Research Groups of China(51321064)the National Natural Science Foundation of China(11172282 and 51378015)
文摘The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator,obviously reducing the penetration efficiency of penetrator.Provided that the work of friction between projectile and target is totally transformed into the heat to melt penetrator material at its nose surface,an engineering model is established for the mass loss and nose-blunting of the ogive-nosed projectile.A dimensionless formula for the relative mass loss of projectile is obtained by introducing the dimensionless impact function I and geometry function N of the projectile.The critical value V c0of the initial striking velocity is formulated,and the mass loss of projectile tends to increase weakly nonlinearly with I/N when V0〉V c0,whilst the mass loss is proportional to the initial kinetic energy of projectile when V0
基金supported by the National Natural Science Foundation of China (10672152)the Science Foundation of China Academy of Engineering Physics (2009A0201009)the Innovation Fund of the Institute of Structural Mechanics,CAEP (09CXJ05)
文摘Earth penetration weapon (EPW) is applicable for attacking underground targets protected by reinforced concrete and rocks. With increasing impact velocity, the mass loss/abrasion of penetrator increases, which significandy decreases the penetration efficiency due to the change of nose shape. The abrasion may induce instability of the penetrator, and lead to failure of its structure. A common disadvantage, i.e. dependence on corresponding experimen- tal results, exists in all the available formulae, which limits their ranges of application in estimating the mass loss of penetrator. In this paper, we conduct a parametric study on the mass loss of penetrator, and indicate that the mass loss of penetrator can be determined by seven variables, i.e., the initial impact velocity, initial nose shape, melting heat, shank diameter of projectile and density and strength of target as well as the aggregate hardness of target. Further discussion on factors dominant in the mass abrasion of penetrator are given, which may be helpful for optimizing the target or the projectile for defensive or offensive objectives, respectively.
文摘Objective: This work compares the occlusive effect and the penetration enhancement ability of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), through in vitro skin. Methods: SLN and NLC were prepared by high shear homogenization and characterized by size, polydispersity index, zeta potential, morphology and physical stability. Occlusive effect was assessed by an in vitro test and by measuring TEWL using pig skin. Skin treated with the lipid carriers was visualized by SEM. A penetration test through skin, followed by tape stripping, was carried out using Nile red as a marker. Results: SLN (200 ± 6 nm) and NLC (192 ± 11 nm) were obtained. An occlusion factor of 36% - 39% was observed for both systems, while a reduction in TEWL of 34.3% ± 14.8% and 26.2% ± 6.5% was seen after treatment with SLN and NLC, respectively. SEM images showed a film formed by the lipid carriers, responsible for the occlusion observed. No differences were found between the occlusive effect produced by SLN and NLC in both tests. NLC allowed the penetration of a greater amount of Nile red than SLN: 4.7 ± 1.3 μg and 1.7 ± 0.4 μg, respectively. Conclusion: Both carriers form a film on the skin, providing an occlusive effect with no differences between these two systems. The penetration of a marker (Nile red) into the stratum corneum was quite higher for NLC than for SLN, suggesting an influence of the composition of these particles on their penetration enhancing ability.
基金Funded by a Science and Technology Project from the Ministry of Housing and Urban-Rural Development of the People’s Republic of China(No.2019-K-047)Yangzhou Government-Yangzhou University Cooperative Platform Project for Science and Technology Innovation(No.YZ2020262)。
文摘The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride solutions of specific concentrations with different test ages.Hardened properties of the mixes were assessed in terms of weight loss and compressive strength.X-ray diffraction(XRD)and scanning electron microscopy(SEM)of mixes were performed to analysis the phase evolution and microstructure.The results demonstrated that the introduction of nano-SiO_(2) emulsion significantly decreased the compressive strength loss and calcium hydroxide(CH)crystal content of hydration production,and then enhanced the resistance of cement-based grouting materials to chloride ion penetration.This improvement derives from the filling and pozzolanic effects of nano-SiO_(2) particles,which were incorporated via an emulsion and attributed to a well dispersion in grouting matrix.
文摘目的研究中药挥发油透皮促渗苷类成分效果与对经皮水分散失量(Transepidermal water loss,TEWL)的相关性。方法采用HPLC法测定3种苷类成分(栀子苷、龙胆苦苷、芍药苷)的含量及油水分配系数,采用改良Franz扩散池法以离体SD大鼠腹部皮肤为透皮吸收屏障进行体外透皮实验,考察高良姜、干姜、薄荷、胡椒和吴茱萸5种中药挥发油对3种苷类成分的体外透皮促渗效果,采用经皮水分散失量评价5种中药挥发油对大鼠皮肤屏障功能的影响,通过相关性分析考察中药挥发油透皮促渗苷类成分效果与其对皮肤屏障功能影响之间的相关性。结果高良姜油、干姜油、薄荷油、胡椒油能促进3种苷类成分的透皮吸收,也能显著降低大鼠的皮肤屏障功能,相关性分析结果表明中药挥发油对苷类成分的透皮促渗效果与其对皮肤经皮水分散失量的影响显著相关。结论TEWL为中药挥发油透皮促渗剂的快速筛选提供了一种简便快捷的在体评价方法。
基金supported by the Exploratory Research Fund of State Key Laboratory of Explosion Science and Safety Protection.
文摘The high-speed penetration of concrete targets by kinetic energy projectiles results in apparent mass loss,which blunts the nose of the projectile and decrease its penetration performance.The friction work between the projectile and the concrete target,the plastic deformation of the projectile,and the cutting of aggregates to the projectile significantly affect the mass loss of the projectile.To address these effects,a discrete iterative model is developed for the mass loss and nose shape evolution of the projectile by coupling three mechanisms based on the effect of temperature on strength.In the model,both friction work and plastic work increase the temperature of the projectile's surface layer,thereby weakening the strength of this part and rendering it easier for mass loss to occur due to aggregate cutting.The model discretizes the projectile and penetration process with respect to the space and time dimensions,respectively.The mass loss and nose shape evolution of the projectile are obtained by iteratively calculating a point-by-point regression.The predicted depth of penetration(DOP),mass loss,and residual projectile profile are compared with experimental data to validate the model.The comparison shows satisfactory agreement between the calculated results and experimental data.Additionally,the deceleration,velocity,DOP,and mass loss during penetration are analyzed with respect to time.Finally,based on the model,the effects of projectile strength,caliber-radius-head(CRH),and concrete target strength on penetration are discussed.