This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the g...This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the geometrical shape of breakwater. By using periodic boundary condition and separation of variables, series solutions of velocity potentials in inner and outer regions are developed. Unknown expansion coefficients in series solutions are determined by matching velocity and pressure of continuous conditions on the interface between two regions. Then, hydrodynamic quantities involving reflection coefficients and wave forces acting on breakwater are estimated. Analytical solution is validated by a multi-domain boundary element method solution for the present problem. Diffusion reflection due to periodic variations in breakwater shape and corresponding surface elevations around the breakwater are analyzed. Numerical examples are also presented to examine effects of caisson parameters on total wave forces acting on caissons and total wave forces acting on side plates. Compared with a traditional vertical wall breakwater, the wave force acting on a suitably designed comb-type caisson breakwater can be significantly reduced. This study can give a better understanding of the hydrodynamic performance of comb-type caisson breakwaters.展开更多
The characteristics of wave transmission, reflection and energy dissipation of comb-type caisson breakwaters are studied through laboratory physical model tests. Regular and irregular waves, with a wide range of wave ...The characteristics of wave transmission, reflection and energy dissipation of comb-type caisson breakwaters are studied through laboratory physical model tests. Regular and irregular waves, with a wide range of wave heights and periods and a constant water depth, are considered. Different dimensions of each portion of the comb-type caisson breakwater are tested. Empirical formulae for calculating the reduction coefficient k, which is the ratio of horizontal wave force on unit length of the comb-type breakwater to that on unit length of the vertical wall breakwater, and for calculating the reflection coefficient of waves k, are obtained from the measurements. The comb-type caisson breakwater has been found to be very efficient in dissipating incident wave energy and in reducing wave reflection, and has already been used for the construction of an island breakwater in the Dayao Bay of Dalian Port, Liaoning Province, China. Compared with the cost of a common caisson breakwater, about 24.5% of the investment has been saved owing to the use of this comb-type breakwater.展开更多
The comb-type breakwater(CTB)has been proposed and investigated in recent years due to its advantages in terms of deep-water adaptability,material saving and water exchanges.All existing empirical formulae for CTBs ha...The comb-type breakwater(CTB)has been proposed and investigated in recent years due to its advantages in terms of deep-water adaptability,material saving and water exchanges.All existing empirical formulae for CTBs have been so far restricted to the water level above the bottom of the superstructure,which mainly occurs under the high tides or storm tides.However,based on recent engineering applications and experimental observations,the most severe conditions for CTBs are more likely to occur under a medium water level,because impulsive wave pressure may occur due to interactions between waves and the special chamber in CTBs.Meanwhile,during the most of construction and operation periods,the CTBs are mainly working under the medium water levels,i.e.,water levels below the bottom of the superstructure.In this study,the effects of main influence parameters on the horizontal wave force coefficient and wave transmission coefficient for open CTBs(with partially immersed side plates)under medium water levels were investigated based on a 3D numerical wave flume and corresponding empirical formulae were proposed.It is indicated that the location of the side plate related to the main caisson has significant influence on the hydrodynamic performance of CTBs.In engineering applications,the location of the side plate can be designed at b/L≤0.15 or b/L≥0.3(where b is the distance between the side plate and the front face of the main caisson and L is the incident wave length)for efficiently lowering the horizontal wave force and wave transmission.The flow mechanism of impulsive wave force on CTBs was revealed based on synchronous analyses of flow fields and pressure distribution.Through appropriate design of the height of the superstructure according to H/hD≤1.0 or H/hD≥1.5(where H is the incident wave height and hD is the distance between the still water level and the bottom of the superstructure),the likely impulsive wave pressure on the side plate can also be diminished.展开更多
This paper presents failure mechanisms of the soil at the caisson-tip with fillet during suction-assisted penetration of suction caissons in undrained clay.Theoretical solutions of resistance factor N_c of the caisson...This paper presents failure mechanisms of the soil at the caisson-tip with fillet during suction-assisted penetration of suction caissons in undrained clay.Theoretical solutions of resistance factor N_c of the caisson-tip are obtained in terms of the caisson-tip geometry ratio of the flat section of the caisson-tip to the caisson wall thickness m/t and adhesion factorsα_i along inside of caisson wall andα_b at the base of the caisson-tip.It is indicated that the factor N_c increases with the increase of m/t,α_i and a_b.The resistance factors N_c for the rough base(α_b=1)are larger by 0.57than that for the smooth base(α_b=0).Besides,the factors N_c of caisson-tip with flat base(m=t)are larger by 1.14 than that with full internal fillet(m=0).The required suction to penetrate suction caissons with various fillets is obtained in terms of the force equilibrium in vertical direction.The finite element limit analysis and centrifuge model test results are used to verify the rationality of the presented failure mechanisms and theoretical predictions.展开更多
Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction res...Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction resulted from pumping out the encased water is integral to practical engineering.Model tests were carried out to investigate the suctionassisted installation of suction caissons in clay under various undrained shear strengths.It was found that there exists a critical penetration depth value.When the penetration depth is smaller than the critical value,the soil plug undrained shear strength is higher than intact clay(i.e.,clay prior to installation).However,when the penetration depth is greater than the critical penetration depth,the undrained shear strength of soil plug is lower than intact clay.The critical value decreases with the increasing consolidation time and undrained shear strength of clay.During suction-assisted installation,cracks occur around suction caissons.The installation way has little effect on the crack formation.The influence range(i.e.,the maximum distance between the crack and the suction caisson edge)was found to increase with the increasing friction coefficient of interface between the suction caisson wall and soil and decreases with the increasing soil undrained shear strength.In addition,the drained condition of the clay during installation is dominated by the caisson aspect ratio,the undrained shear strength and the friction coefficient between the caisson wall and clay.Equations to estimate the penetration resistance and the required suction to install the suction caisson are summarized.展开更多
With the continuous improvement of urban residents’lives,the demand for of urban infrastructure construction increases,requiring more and more advanced engineering technology.We should not only speed up the progress ...With the continuous improvement of urban residents’lives,the demand for of urban infrastructure construction increases,requiring more and more advanced engineering technology.We should not only speed up the progress of the project,but also reduce the impact of the construction on the surrounding environment.Our company has had several achievements in this regard,and prefabricated open caisson construction process is one of them.In this paper,the application of prefabricated caisson construction method is analyzed in depth according to the actual situation of the rain sewage reconstruction treatment project of Minghe ecological water system in Dancheng County.Through practice,it is concluded that this construction method greatly improves the construction efficiency,shortens the overall construction process,reduces the construction cost,and effectively improves environmental quality of the construction site,which has good reference value.展开更多
To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based o...To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based on the field monitoring data of lateral soil pressure on the side wall of the open caisson for the southern anchorage of the Maanshan Yangtze River Highway Bridge, the statistical result of the side friction under different buried depths of the cutting edge of the open caisson was back-analyzed; and the side friction distribution of the large open caisson was underlined. The analysis results indicate that when the buried depth of the cutting edge is smaller than a certain depth H0, the side friction linearly increases with the increase in the buffed depth. However, as the buffed depth of the cutting edge is larger than H0, the side friction shows a distribution with small at both ends and large in the middle. The top of the distribution can be regarded as a linear curve, while the bottom as a hyperbolic curve. As the buffed depth of cutting edge increases continuously, the peak value of the side friction linearly increases and the location of the peak value gradually moves down. Based on the aforementioned conclusions, a revised calculation mode of the large open caisson is presented. Then, the calculated results are compared with the field monitoring data, which verifies the feasibility of the proposed revised calculation mode.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903 and 51279224)
文摘This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the geometrical shape of breakwater. By using periodic boundary condition and separation of variables, series solutions of velocity potentials in inner and outer regions are developed. Unknown expansion coefficients in series solutions are determined by matching velocity and pressure of continuous conditions on the interface between two regions. Then, hydrodynamic quantities involving reflection coefficients and wave forces acting on breakwater are estimated. Analytical solution is validated by a multi-domain boundary element method solution for the present problem. Diffusion reflection due to periodic variations in breakwater shape and corresponding surface elevations around the breakwater are analyzed. Numerical examples are also presented to examine effects of caisson parameters on total wave forces acting on caissons and total wave forces acting on side plates. Compared with a traditional vertical wall breakwater, the wave force acting on a suitably designed comb-type caisson breakwater can be significantly reduced. This study can give a better understanding of the hydrodynamic performance of comb-type caisson breakwaters.
基金This paper presents part of the achievement in the China National Key Project"Construction Techniques for Breakwa-ters in Deep Water"(96-415-02-03)
文摘The characteristics of wave transmission, reflection and energy dissipation of comb-type caisson breakwaters are studied through laboratory physical model tests. Regular and irregular waves, with a wide range of wave heights and periods and a constant water depth, are considered. Different dimensions of each portion of the comb-type caisson breakwater are tested. Empirical formulae for calculating the reduction coefficient k, which is the ratio of horizontal wave force on unit length of the comb-type breakwater to that on unit length of the vertical wall breakwater, and for calculating the reflection coefficient of waves k, are obtained from the measurements. The comb-type caisson breakwater has been found to be very efficient in dissipating incident wave energy and in reducing wave reflection, and has already been used for the construction of an island breakwater in the Dayao Bay of Dalian Port, Liaoning Province, China. Compared with the cost of a common caisson breakwater, about 24.5% of the investment has been saved owing to the use of this comb-type breakwater.
基金financially supported by the General Program of the National Natural Science Foundation of China(Grant No.51979192)the National Key Rsearch and Development Program of China(Grant Nos.2020YFE0201200 and 2021YFB2600700)the Program of China Communications Construction Company Limited(Grant No.2018-ZJKJ-01).
文摘The comb-type breakwater(CTB)has been proposed and investigated in recent years due to its advantages in terms of deep-water adaptability,material saving and water exchanges.All existing empirical formulae for CTBs have been so far restricted to the water level above the bottom of the superstructure,which mainly occurs under the high tides or storm tides.However,based on recent engineering applications and experimental observations,the most severe conditions for CTBs are more likely to occur under a medium water level,because impulsive wave pressure may occur due to interactions between waves and the special chamber in CTBs.Meanwhile,during the most of construction and operation periods,the CTBs are mainly working under the medium water levels,i.e.,water levels below the bottom of the superstructure.In this study,the effects of main influence parameters on the horizontal wave force coefficient and wave transmission coefficient for open CTBs(with partially immersed side plates)under medium water levels were investigated based on a 3D numerical wave flume and corresponding empirical formulae were proposed.It is indicated that the location of the side plate related to the main caisson has significant influence on the hydrodynamic performance of CTBs.In engineering applications,the location of the side plate can be designed at b/L≤0.15 or b/L≥0.3(where b is the distance between the side plate and the front face of the main caisson and L is the incident wave length)for efficiently lowering the horizontal wave force and wave transmission.The flow mechanism of impulsive wave force on CTBs was revealed based on synchronous analyses of flow fields and pressure distribution.Through appropriate design of the height of the superstructure according to H/hD≤1.0 or H/hD≥1.5(where H is the incident wave height and hD is the distance between the still water level and the bottom of the superstructure),the likely impulsive wave pressure on the side plate can also be diminished.
基金financially supported by the National Natural Science Foundation of China (Grant No.51879044)the Youth Foundation of Shandong Natural Science Foundation (Grant No.ZR2020QE258)+1 种基金Qingdao Postdoctoral Applied Research Project (Grant No.ZX20220202)SDUST Research Fund (Grant No.2015KYJH104)。
文摘This paper presents failure mechanisms of the soil at the caisson-tip with fillet during suction-assisted penetration of suction caissons in undrained clay.Theoretical solutions of resistance factor N_c of the caisson-tip are obtained in terms of the caisson-tip geometry ratio of the flat section of the caisson-tip to the caisson wall thickness m/t and adhesion factorsα_i along inside of caisson wall andα_b at the base of the caisson-tip.It is indicated that the factor N_c increases with the increase of m/t,α_i and a_b.The resistance factors N_c for the rough base(α_b=1)are larger by 0.57than that for the smooth base(α_b=0).Besides,the factors N_c of caisson-tip with flat base(m=t)are larger by 1.14 than that with full internal fillet(m=0).The required suction to penetrate suction caissons with various fillets is obtained in terms of the force equilibrium in vertical direction.The finite element limit analysis and centrifuge model test results are used to verify the rationality of the presented failure mechanisms and theoretical predictions.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52371301,51879044 and 51808325)the Shandong Natural Fund (Grant No.ZR2020QE258)。
文摘Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction resulted from pumping out the encased water is integral to practical engineering.Model tests were carried out to investigate the suctionassisted installation of suction caissons in clay under various undrained shear strengths.It was found that there exists a critical penetration depth value.When the penetration depth is smaller than the critical value,the soil plug undrained shear strength is higher than intact clay(i.e.,clay prior to installation).However,when the penetration depth is greater than the critical penetration depth,the undrained shear strength of soil plug is lower than intact clay.The critical value decreases with the increasing consolidation time and undrained shear strength of clay.During suction-assisted installation,cracks occur around suction caissons.The installation way has little effect on the crack formation.The influence range(i.e.,the maximum distance between the crack and the suction caisson edge)was found to increase with the increasing friction coefficient of interface between the suction caisson wall and soil and decreases with the increasing soil undrained shear strength.In addition,the drained condition of the clay during installation is dominated by the caisson aspect ratio,the undrained shear strength and the friction coefficient between the caisson wall and clay.Equations to estimate the penetration resistance and the required suction to install the suction caisson are summarized.
文摘With the continuous improvement of urban residents’lives,the demand for of urban infrastructure construction increases,requiring more and more advanced engineering technology.We should not only speed up the progress of the project,but also reduce the impact of the construction on the surrounding environment.Our company has had several achievements in this regard,and prefabricated open caisson construction process is one of them.In this paper,the application of prefabricated caisson construction method is analyzed in depth according to the actual situation of the rain sewage reconstruction treatment project of Minghe ecological water system in Dancheng County.Through practice,it is concluded that this construction method greatly improves the construction efficiency,shortens the overall construction process,reduces the construction cost,and effectively improves environmental quality of the construction site,which has good reference value.
基金Project supported by China Communications Construction Company Limited(No.2008-ZJKJ-11)
文摘To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based on the field monitoring data of lateral soil pressure on the side wall of the open caisson for the southern anchorage of the Maanshan Yangtze River Highway Bridge, the statistical result of the side friction under different buried depths of the cutting edge of the open caisson was back-analyzed; and the side friction distribution of the large open caisson was underlined. The analysis results indicate that when the buried depth of the cutting edge is smaller than a certain depth H0, the side friction linearly increases with the increase in the buffed depth. However, as the buffed depth of the cutting edge is larger than H0, the side friction shows a distribution with small at both ends and large in the middle. The top of the distribution can be regarded as a linear curve, while the bottom as a hyperbolic curve. As the buffed depth of cutting edge increases continuously, the peak value of the side friction linearly increases and the location of the peak value gradually moves down. Based on the aforementioned conclusions, a revised calculation mode of the large open caisson is presented. Then, the calculated results are compared with the field monitoring data, which verifies the feasibility of the proposed revised calculation mode.