This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-...This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-combat behavior data.The technique of air-combat behavior data mining based on the truncation method is proposed to discover the air-combat rules or patterns.The simulation platform of the air-combat behavior data mining that supports two fighters is implemented.The simulation experimental results show that the proposed air-combat behavior data mining technique based on the truncation method is feasible whether in efficiency or in effectiveness.展开更多
在无人机(UAV)集群攻击地面目标时,UAV集群将分为两个编队:主攻目标的打击型UAV集群和牵制敌方的辅助型UAV集群。当辅助型UAV集群选择激进进攻或保存实力这两种动作策略时,任务场景类似于公共物品博弈,此时合作者的收益小于背叛者。基于...在无人机(UAV)集群攻击地面目标时,UAV集群将分为两个编队:主攻目标的打击型UAV集群和牵制敌方的辅助型UAV集群。当辅助型UAV集群选择激进进攻或保存实力这两种动作策略时,任务场景类似于公共物品博弈,此时合作者的收益小于背叛者。基于此,提出一种基于深度强化学习的UAV集群协同作战决策方法。首先,通过建立基于公共物品博弈的UAV集群作战模型,模拟智能化UAV集群在合作中个体与集体间的利益冲突问题;其次,利用多智能体深度确定性策略梯度(MADDPG)算法求解辅助UAV集群最合理的作战决策,从而以最小的损耗代价实现集群胜利。在不同数量UAV情况下进行训练并展开实验,实验结果表明,与IDQN(Independent Deep QNetwork)和ID3QN(Imitative Dueling Double Deep Q-Network)这两种算法的训练效果相比,所提算法的收敛性最好,且在4架辅助型UAV情况下胜率可达100%,在其他UAV数情况下也明显优于对比算法。展开更多
文摘This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-combat behavior data.The technique of air-combat behavior data mining based on the truncation method is proposed to discover the air-combat rules or patterns.The simulation platform of the air-combat behavior data mining that supports two fighters is implemented.The simulation experimental results show that the proposed air-combat behavior data mining technique based on the truncation method is feasible whether in efficiency or in effectiveness.
文摘在无人机(UAV)集群攻击地面目标时,UAV集群将分为两个编队:主攻目标的打击型UAV集群和牵制敌方的辅助型UAV集群。当辅助型UAV集群选择激进进攻或保存实力这两种动作策略时,任务场景类似于公共物品博弈,此时合作者的收益小于背叛者。基于此,提出一种基于深度强化学习的UAV集群协同作战决策方法。首先,通过建立基于公共物品博弈的UAV集群作战模型,模拟智能化UAV集群在合作中个体与集体间的利益冲突问题;其次,利用多智能体深度确定性策略梯度(MADDPG)算法求解辅助UAV集群最合理的作战决策,从而以最小的损耗代价实现集群胜利。在不同数量UAV情况下进行训练并展开实验,实验结果表明,与IDQN(Independent Deep QNetwork)和ID3QN(Imitative Dueling Double Deep Q-Network)这两种算法的训练效果相比,所提算法的收敛性最好,且在4架辅助型UAV情况下胜率可达100%,在其他UAV数情况下也明显优于对比算法。